
THESE de DOCTORAT DE
L’UNIVERSITE CLAUDE BERNARD LYON 1

Ecole Doctorale N° 512
 ÉCOLE DOCTORALE INFORMATIQUE, MATHÉMATIQUES DE

LYON (INFOMATHS)

Discipline : Informatique

Soutenue publiquement le 08/07/2024, par :
Nacim Oijid

Complexité des jeux positionnels sur les
graphes

Complexity of positional games on
graphs

Devant le jury composé de :

Lampis Michael Maître de conférence, HDR, Université
Paris Dauphine

Rapporteur

Todinca Ioan Professeur des universités, Université
d’Orléans

Rapporteur

Demaine Erik Professeur, Massachusetts Institute of
Technology

Examinateur

Guerin Lassous Isabelle Professeure des universités, Université
Lyon 1

Examinatrice

Duchêne Eric Professeur des universités, Université
Lyon 1

Directeur de
thèse

Parreau Aline Chargée de recherche CNRS, Lyon Co-directrice de
thèse

Abstract

This Ph.D. thesis deals with the complexity of positional games, i.e. games in which two players take
turns claiming unclaimed vertices of a hypergraph. In the most famous convention, Maker-Breaker, Maker
wins if she manages to claim all the vertices of a hyperedge, otherwise, Breaker wins. In these games, there is
always one player who has a winning strategy, and we study here the algorithmic complexity of determining
which player it is, in different conventions and on different structures.

This model of games is very general, and in the most recent studies, the hypergraph is an underlying
structure of the game, which is played on a graph, called the board. In this context, the players take turns
claiming edges of the graph and Maker wins if she manages to create some structure in the graph, such
as a copy of some other graph, or a perfect matching. The focus of this manuscript is on the algorithmic
complexity of different positional games in different conventions. In this manuscript, we present some results
on different aspects of the complexity studies of positional games.

First, we focus on the general complexity of the Avoider-Enforcer and Client-Waiter conventions. In both
cases, we prove their PSPACE-completeness, even restricting the input to hypergraphs with small hyperedges.
Then, we present complexity results on some of the most studied positional games, namely, the H-game and
the perfect matching game, played in Maker-Breaker convention on the edge set of graphs. In both cases, we
prove their PSPACE-hardness, and we provide some polynomial and FPT results for the H-game. Next, we
switch to games on vertices, and we focus on the parameterized complexity of the Maker-Breaker domination
game. We prove that it is W[2]-hard to know whether Dominator can build a dominating set in k moves.
However, when considering graph parameters, we provide FPT algorithms for the modular-width, the size
of a minimum feedback edge set, and the distance to cluster. Keeping the focus on games on vertices, we
then switch the convention and consider the Maker-Maker convention of the domination game. We provide
a polynomial-time algorithm for computing the winner of the Maker-Maker domination game on forests.
Finally, we introduce scoring positional games as a way to extend positional games to a larger framework.
Here, Maker aims to fill up as many hyperedges as possible, rather than just a single one. We prove that
computing Maker’s score is PSPACE-complete, even for rank 2 hypergraphs. We then provide a linear-
time algorithm for computing the score on unions of paths and an FPT algorithm parameterized by the
neighborhood diversity.

Résumé

Cette thèse traite de la complexité des jeux positionnels qui sont des jeux joués sur des hypergraphes :
Deux joueurs prennent à tour de rôle les sommets libres de l’hypergraphe. Les conditions de victoire
dépendent alors des hyperarêtes. Selon un ensemble de règles appelé convention, les joueurs ont différents
objectifs. Ils peuvent, par exemple, chercher à remplir une hyperarête avant leur adversaire (convention
Maker-Maker), ou chercher à forcer leur adversaire à en remplir une avant eux (convention Avoider-Avoider)
par exemple. Dans la convention la plus célèbre, Maker-Breaker, Maker gagne s’il parvient à prendre tous
les sommets d’une hyperarête ; sinon, c’est Breaker qui l’emporte.

L’une des propriétés les plus importantes de ces jeux est qu’il s’agit de jeux finis, à information parfaite
et sans hasard. Par conséquent, l’ensemble des suites de coups possible est également fini et peut-être connu
des deux joueurs. On définit alors l’arbre des configurations comme un ensemble de sommet étiquetés par
les différentes positions du jeu, et où un sommet y est enfant d’un sommet x si l’on peut passer de x à y en
effectuant un coup dans le jeu. Par conséquent, il existe une stratégie optimale pour chaque joueur, qu’il est
possible de calculer en sélectionnant chaque coup, en ayant connaissance de tout le sous-arbre issu du sommet
où l’on se trouve. L’issue du jeu est alors définie comme le joueur qui l’emporte si le jeu est joué de manière
optimale. S’il n’y a pas de gagnant, l’issue est nulle. Toutefois, le nombre de configurations à prendre en
compte est généralement exponentielle, en la taille de l’hypergraphe de départ. C’est pourquoi nous nous
intéressons généralement à des calculs de stratégies optimales sans passer par l’arbre des configurations.

Les jeux positionnels ont été introduits en 1963 par Hales et Jewett [HJ63], et les principaux résultats
pionniers de cette étude ont été apportés par Erdős et Selfridge en 1973 [ES73]. En 1978, Schaefer [Sch78]
prouve que déterminer quel joueur a une stratégie gagnante dans un jeu Maker-Breaker est PSPACE-complet,
mais ce résultat a été le seul résultat de complexité connu pendant longtemps. L’étude de la complexité
des jeux positionnels est cependant à nouveau d’actualité, puisque récemment, de nombreux résultats sont
apparus tant en complexité paramétrée par Bonnet et al. [BGL+17] qu’en complexité générale, par Burke et
Hearn [BH19] pour la convention Avoider-Avoider ou encore Miltzow et Stojaković [MS22] pour la convention
Avoider-Enforcer.

L’étude des jeux positionnels est motivée par ses nombreux liens avec d’autres domaines de l’informatique.
Pour ne citer que les principaux, des liens immédiats avec la théorie des graphes et des hypergraphes, la
logique et la théorie de la complexité justifient cette étude et certains résultats dans ces domaines provien-
nent de résultats en jeux positionnels. Par exemple, Erdős et Selfridge [ES73] donnent une borne inférieure
sur le nombre chromatique des hypergraphes en fonction de l’issue d’un jeu positionnel. Plus tard, Bon-
net et al. [BGL+17] prouvent que la vérification de modèles d’une certaine famille de formules logiques,
représentant des parties de jeux positionnels, est dans W[1] .

Ce modèle de jeu est très général et, dans les études les plus récentes, l’hypergraphe est une structure
sous-jacente du jeu, qui se joue en réalité sur un graphe. Dans les études les plus courantes, les joueurs
prennent à tour de rôle des arêtes du graphe et Maker gagne s’il parvient à créer une certaine structure
dans le graphe, par exemple, une copie d’un autre graphe cible ou un couplage parfait. Ici, l’hypergraphe
sous-jacent a donc une hyperarête par copie du graphe cible ou par couplage parfait du graphe. Le nombre
de sous-graphes isomorphes au graphe cible ou de couplages parfaits d’un graphe pouvant être arbitrairement
grand, on comprend donc qu’il est plus simple de jouer sur un graphe, et non sur l’hypergraphe sous-jacent.

Cette thèse s’intéresse à la complexité des jeux positionnels sous trois différents points de vue. D’abord,
nous nous intéressons à leur complexité dans le cadre général de l’étude de différentes conventions jouées
sur des hypergraphes. En effet, bien que de nombreuses conventions aient été introduites, seuls trois d’entre
elles étaient connues comme étant PSPACE-complètes pour le calcul de l’issue. Puis, nous étudions des jeux
positionnels plus particuliers, joués sur des graphes, où les ensembles gagnants cöıncident avec des structures
particulières des graphes considérés. Nous étudierons ces jeux à la fois dans un cadre général et en observant

leur complexité paramétrée. Enfin, nous présenterons une piste pour élargir le cadre des jeux positionnels
en ajoutant un score qu’un joueur cherchera à maximiser et l’autre à minimiser, proposant ainsi un cadre
d’étude pour les jeux positionnels à score.

Un résultat important de cette thèse, formulé ici pour la première fois de manière générique, est le Super
Lemma. Ce lemme, applicable aussi bien dans les conventions Maker-Breaker et Avoider-Enforcer, permet
de traiter les sommets ayant le même voisinage dans les hypergraphes considérés. Ce lemme affirme que
si deux sommets ont le même voisinage, il existe une stratégie optimale où chaque joueur prendra l’un de
ces deux sommets. Bien que son énoncé se formule simplement, ce lemme a de nombreuses applications,
notamment en complexité paramétrée, car c’est l’outil principal qui sera utilisé dans plusieurs chapitres de
cette thèse afin d’obtenir des algorithmes FPT.

Dans la littérature, il existe six principales conventions dans lesquelles les jeux positionnels sont étudiés.
Parmi elles, trois étaient déjà connues pour leur difficulté algorithmique : il est PSPACE-complet de déterminer
si un joueur a une stratégie gagnante dans un jeu Maker-Breaker, Maker-Maker ou Avoider-Avoider. La
complexité algorithmique des trois autres grandes conventions des jeux positionnels était encore inconnue.
Nous prouvons pour commencer que parmi ces dernières, dans les conventions Avoider-Enforcer et Client-
Waiter, il est également PSPACE-complet de déterminer quel joueur a une stratégie gagnante, enrichissant
ainsi cette étude et en ne laissant que la complexité de la convention Waiter-Client ouverte.

Nous nous concentrerons ensuite sur les jeux positionnels joués sur des graphes. Les jeux les plus étudiés
dans ce domaine se jouent en convention Maker-Breaker sur les arêtes des graphes considérés. Les jeux les
plus connus étant le jeu de connectivité, le H-game, le jeu du couplage parfait et le jeu du cycle hamiltonien.
La plupart des études de ces jeux ont été réalisées sur des graphes complets et visaient à obtenir des résultats
asymptotiques en considérant des biais. Le seul résultat général de complexité algorithmique provient de
Lehman [Leh64], prouvant que le jeu de connectivité peut être résolu en temps linéaire. Nous réalisons donc
ici la première étude algorithmique du H-game et du jeu du couplage parfait en prouvant qu’il est PSPACE-
complet de déterminer quel joueur a une stratégie gagnante dans ces deux jeux. Nous nous intéressons alors
à des classes de graphes plus restreintes nous permettant d’obtenir des résultats polynomiaux ou FPT selon
les classes considérées.

Le reste de cette thèse se concentre ensuite sur les jeux joués sur les sommets des graphes. Parmi eux, le
plus connu est le jeu de domination, introduit en Maker-Breaker par Duchêne et al. [DGPR20]. Dans leur
article, ils prouvent que le jeu est PSPACE-complet en général, et proposent des algorithmes polynomiaux
lorsque le jeu est joué sur un cographe ou une forêt. Nous cherchons ici à étendre ces résultats en nous
intéressant à la complexité paramétrée de ce jeu. D’une part, nous prouvons que ce jeu est W [2]-dur si nous
limitons le nombre de coups autorisés pour que Dominator crée un ensemble dominant. Puis, nous nous
intéressons à des paramètres de graphes mesurant la distance entre un graphe et les classes de graphe où
des algorithmes polynomiaux sont connus. Ainsi, nous proposons des algorithmes FPT pour la distance aux
clusters, la taille d’un plus petit feedback edge set, et la largeur modulaire mesurant la distance aux unions
de cliques, arbres et cographes respectivement.

Bien qu’ayant été introduit en convention Maker-Breaker, la façon la plus naturelle de jouer aux jeux
positionnels est de considérer la version Maker-Maker. C’est pourquoi, nous continuons l’étude du jeu de
domination en considérant cette fois-ci la convention Maker-Maker. Rapidement, des différences entre les
deux conventions apparaissent et bien que Maker l’emporte facilement sur n’importe quel cycle en Maker-
Breaker, nous prouvons qu’il existe une infinité de cycles en Maker-Maker sur lesquelles la partie se termine
en une partie nulle. Nous nous intéressons alors aux forêts, et prouvons que, comme c’est le cas pour la
version Maker-Breaker, il est possible de déterminer l’issue du jeu en temps polynomial, lorsque le jeu est
joué sur une forêt. Cependant, en Maker-Maker, nous perdons l’équivalence entre l’existence d’une stratégie
gagnante et l’existence d’un couplage parfait dans la forêt. L’algorithme proposé est donc plus subtil et
nécessite de regarder précisément les différentes composantes connexes de la forêt ainsi que les coups des
deux joueurs.

2

Enfin, nous introduisons les jeux positionnels à score comme un moyen d’étendre l’étude des jeux posi-
tionnels à un cadre plus large. Nous cherchons à obtenir des résultats plus généraux sur ces derniers et à
obtenir à cadre ou différents résultats, connus à la fois des jeux à score et des jeux positionnels, peuvent
s’appliquer. Ici, en Maker-Breaker, Maker vise à remplir autant d’hyperarêtes que possible, plutôt qu’une
seule, et Breaker cherche à limiter ce nombre ; tandis qu’en Maker-Maker, chaque joueur tente de remplir
plus d’hyperarêtes que son adversaire. Nous nous concentrons alors sur Incidence, le jeu positionnel à score
joué sur un graphe, où prendre les deux extrémités d’une arête rapporte un point. Nous prouvons que le
calcul du score optimal de Maker dans le jeu Maker-Breaker Incidence est PSPACE-complet. Mais que le jeu
devient cependant polynomial, lorsque nous considérons la convention Maker-Maker, en donnant la formule
exacte du calcul du score optimal, en fonction des degrés des différents sommets du graphe. La possibilité
de calculer le score optimal en temps polynomial en Maker-Maker nous invite donc à chercher des résultats
positifs en Maker-Breaker également. Ainsi, nous fournissons un algorithme FPT paramétré par la neigh-
borhood diversity du graphe pour calculer ce score. Enfin, nous donnons la valeur exacte du score optimal
sur les chemins, et fournissons un algorithme linéaire pour le calculer sur les cycles et les unions de chemins.

3

Remerciements

Je tiens tout d’abord à remercier mon jury, Erik Demaine, Isabelle Guérin Lassous, Michail Lampis et Ioan
Todinca, pour le temps consacré à l’évaluation de mes travaux, en particulier Michail et Ioan pour la relecture
de mon manuscrit, ainsi que pour leurs retours.

Je voudrais ensuite remercier mes directeur et directrice de thèse, Éric Duchêne et Aline Parreau. Leur
encadrement incroyable, leur présence à la fois scientifique et humaine au cours de ces trois années, et surtout
pour leur patience à toute épreuve ont été d’une grande importance au cours de ces trois années et je n’aurais
pas pu rêver d’un meilleur encadrement. Je ne compte plus le temps passé avec eux à discuter à la fois de
ma thèse, de ce qui vient ensuite, ou d’autres sujets pas toujours liés à la recherche. Je ne compte plus non
plus le temps qu’iels ont consacré à me conseiller sur certains travaux dont iels ne sont pas co-auteurs ou sur
mes enseignements, ni le temps qu’iels ont consacré à la relecture de ce manuscrit.

Je ne peux remercier mes directeurices sans remercier le reste du LIRIS, l’équipe GOAL, pour les repas
partagés, les pauses tarot et café, les discussions informelles sur de nombreux problèmes, et surtout les
gâteaux tous les mois. Merci également à mes co-bureaux, présents et passés d’avoir été présents et d’avoir
dynamisé nos journées de travail. Je n’oublie pas non plus tout le personnel administratif, en particulier nos
secrétaires Isabelle, Nathalie et Jean-Pierre qui m’ont aidé dans de nombreuses démarches administratives. Je
remercie le projet INDEPTH ainsi que les ANR GrR et P-GASE pour m’avoir financé plusieurs déplacements
en conférence, workshop ou école jeune chercheur.

Toujours d’un point de vue professionnel, je tiens à remercier mes différents co-auteurs et plus généralement
toustes les chercheureuses avec qui j’ai été amené à travailler pour les différents travaux réalisés ensemble,
leur implication, et leur sérieux. Je les remercie de m’avoir fait confiance, de m’avoir suivi sur mes projets,
de m’en avoir proposé de nouveaux, et de m’avoir fait découvrir tant de problèmes qui ont à la fois éveillé
ma curiosité et ont agrémenté ma culture scientifique sur beaucoup d’aspects !

Je tiens ensuite à remercier ma famille et en particulier mes parents, qui m’ont toujours soutenu dans
mes études, qui m’ont fait confiance lorsque j’ai décidé de faire une troisième année de classe préparatoire
afin de tenter l’ENS une seconde fois, et qui, malgré le fait qu’ils n’ont pas fait de longues études, ont su
m’encourager dans les miennes. Un remerciement particulier pour mon frère Anouar et ma sœur Hind pour
les rigolades, leur soutien, à la fois humain et financier, et les nombreux repas partagés.

N’ayant pas passé trois années consécutives sur mon bureau, j’aimerais terminer en remerciant mes amis,
camarades et coéquipiers. Je remercie Camille Baudry, Hélène Buscail et Cloé Gaillard pour leur soutien
pendant une longue partie de ma thèse, les moments à travailler ensemble, et pour s’être assurées de ma bonne
santé mentale au cours de cette période, m’encourageant dans mon travail lorsqu’il le fallait et m’incitant à
me reposer lorsque j’en avais besoin. Enfin, j’aimerais remercier les Gones de Lyon, mon équipe de football
américain, avec qui nous avons remporté le championnat régional en 2023 et les Scarlet Thunders, mon
équipe de cheerleaders, qui a toujours été disponible pour un entrâınement ! Ces deux équipes m’ont aidé à
ne pas m’enfermer dans ma thèse, à garder une vie extérieure au travail et surtout à continuer le sport en
toute circonstance. Un merci particulier aux différents coachs que j’ai eus au sein de ces deux équipes qui
m’ont énormément poussé à progresser !

1

Contents

Introduction 5

1 Preliminaries and state of the art 9
1.1 Definitions . 9

1.1.1 General definition of positional games . 9
1.1.2 Link between the conventions . 14
1.1.3 Definitions about graphs . 16
1.1.4 Some examples of games . 18

1.2 History of positional games . 19
1.2.1 The beginning: Maker-Maker games . 19
1.2.2 Introduction of Maker-Breaker games . 19
1.2.3 Toward general results on positional games: Edős-Selfridge criterion 20
1.2.4 Biased Maker-Breaker games . 21
1.2.5 Misere version: Avoider-Enforcer games . 23
1.2.6 I cut, you’ll choose: Client-Waiter and Waiter-Client games 24
1.2.7 Connection between positional games and other areas of computer science 24

1.3 Algorithmic and complexity studies . 25
1.3.1 Complexity . 26
1.3.2 Complexity of positional games . 30

1.4 Tools in positional games . 34
1.4.1 Equivalences between hypergraphs . 35
1.4.2 Union of hypergraphs . 35
1.4.3 Dominated moves . 36
1.4.4 Pairing strategies . 37
1.4.5 Symmetries and Super Lemma . 39

2 Complexity of the different conventions 43
2.1 Avoider-Enforcer games are PSPACE-complete . 43

2.1.1 Construction of the hypergraph and of the order . 44
2.1.2 Winner in the legitimate order . 44
2.1.3 Enforcer’s winning strategy . 45
2.1.4 Avoider’s winning strategy . 47
2.1.5 Conclusion . 49

2.2 Client-Waiter games are PSPACE-complete . 50
2.2.1 Paired SAT is PSPACE-complete . 51
2.2.2 Blocks in Client-Waiter games . 52
2.2.3 Construction of the hypergraph . 53
2.2.4 Waiter’s winning strategy . 54
2.2.5 Client’s winning strategy . 55
2.2.6 Conclusion . 56

2

2.3 Applications . 57
2.3.1 The construction of the graph . 57
2.3.2 Avoider-Enforcer domination game . 58
2.3.3 Waiter-Client domination game . 59

2.4 Further work . 60

3 Maker-Breaker games on edges 61
3.1 PSPACE-completeness results . 61

3.1.1 PSPACE-completeness of the perfect-matching game 61
3.1.2 PSPACE-completeness of the H-game . 68

3.2 Polynomial time algorithms . 70
3.2.1 Linear-time algorithm for the P4-game . 70
3.2.2 Star-game in trees . 72

3.3 Parameterized results . 75
3.4 Further work . 78

4 Parameterized complexity of the Maker-Breaker domination game 80
4.1 Maker-Breaker domination game . 80
4.2 Preliminary results . 83
4.3 Number of moves . 84

4.3.1 When Staller must win in few moves . 84
4.3.2 When Dominator must win in few moves . 86

4.4 Size of a minimum dominating set . 87
4.5 The modular-width . 87
4.6 Size of a minimum feedback edge set . 91
4.7 Distance to cluster . 95
4.8 Further work . 98

5 Maker-Maker domination game 100
5.1 Comparison between Maker-Breaker and Maker-Maker conventions 101

5.1.1 General complexity . 101
5.1.2 Pairing strategies . 101
5.1.3 Removing leaves . 102

5.2 Preliminaries . 103
5.2.1 Union of components . 103
5.2.2 Splitting the game . 103
5.2.3 Traps . 104

5.3 Path and cycles . 105
5.3.1 Bounded baths . 105
5.3.2 Paths . 108
5.3.3 Cycles . 108

5.4 A polynomial algorithm on forests . 109
5.4.1 Removing small components . 109
5.4.2 Bottom-to-top strategies for Bob . 110
5.4.3 Cherries . 111
5.4.4 Definition of the skeleton and easy cases . 112
5.4.5 First move of Alice . 113
5.4.6 Splitting the graph . 115
5.4.7 Favorable skeletons for Alice . 116

5.5 Proof of the main theorem . 120
5.5.1 The direct part . 120
5.5.2 The converse part . 125

3

5.6 Further work . 133

6 Scoring positional games 135
6.1 Scoring combinatorial games . 135

6.1.1 Definition of scoring positional games . 136
6.1.2 Milnor’s universe . 137
6.1.3 Incidence . 139

6.2 General results on scoring positional games . 139
6.2.1 General complexity of scoring positional games . 139
6.2.2 Bounds on the score . 140

6.3 Maker-Maker Incidence is polynomial . 142
6.4 General results on Maker-Breaker Incidence . 143
6.5 Complexity of Maker-Breaker Incidence . 145

6.5.1 PSPACE-completeness of Incidence . 145
6.5.2 Complexity parameterized by the neighborhood diversity 150

6.6 Paths and cycles . 151
6.6.1 Equivalences of paths . 151
6.6.2 Union of paths and cycles . 156

6.7 Further work . 158

Conclusion 159

References 161

Index 165

4

Introduction

Grab a coffee, take a seat. It’s gonna be fun.

Definition of the subject

Have you ever wondered why some games are fun, while others are not? Let us try to answer this question.
A few years ago, when I started studying computer science, my friend Truc-Muche, who enjoys coding
algorithms to solve games, told me that the longer his algorithm take to solve a game, the more fun the
game is. I think this definition is a good starting point. A game is fun if Truc-Muche is not able to code
a fast algorithm that plays the game perfectly. However, since some of you won’t know who Truc-Muche
is, nor his coding skills, I decided to switch to a formal definition and compute the complexity of finding a
strategy in these games. Classifying games according to their computational complexity is quite classical,
as it was done for several Nintendo games by Aloupis et al. [ADGV15]. Sorry for the disappointment, but
Pokemon will not be included in this manuscript.

Funding and supervisors

Now that I have a subject, I have to find a way to write a thesis about it. During my third year at the ENS
de Lyon, after a previous internship in (economic) game theory, I wanted to discover combinatorial game
theory. When I googled some names, recent papers on the subject often referred to Eric Duchêne and Aline
Parreau. That’s how I met them and started my Master 2 internship with them. During this internship,
thanks to my skills in cake baking, graph theory and complexity, we discussed the possibility of continuing
our work together. So I started a Ph.D. with them. At the same time, Aline got her funding for the ANR
P-GASE (on positional games), which I joined right from the beginning. With this newly built team, we
started to study the complexity of positional games.

Positional games ?

Oh yeah, sorry, I forgot to tell you what I decided to study. Do you know Tic-Tac-Toe ? The two-player
game where we place crosses and noughts in a 3 ∗ 3 grid and we try to align three of them ? This is the
most famous positional game. So famous that Beck named his book Combinatorial games: Tic-Tac-Toe
theory. In practice, a positional game is played by two players on a set of points called vertices, on which
we define some subsets of points called hyperedges (or sometimes winning sets). If you put the vertices and
the hyperedges together, you get a hypergraph. The players take turns claiming the vertices, and the first
player who manages to claim all the vertices of a hyperedge wins. In Tic-Tac-Toe, there are nine vertices
and eight hyperedges corresponding to the eight lines on the grid, see Figure 1.

However, the title of my thesis refers to “positional games on graphs” and not “on hypergraphs”. This is
because hypergraphs are very general, and a good way to represent any positional game, but specific games
are often played on graphs, which are sets of points called vertices, connected by lines called edges. Take
your favorite graph problem. For example, finding a small set of vertices, called a dominating set, that is
connected to all the other vertices. Finding such a set in a graph is a single-player problem. Now, we add an
opponent who wants to prevent you from finding a dominating set in your graph by forbidding some vertices
from being in it. This becomes a two-player game, called the Maker-Breaker domination game: one player,

5

Figure 1: On the left, the hypergraph corresponding to Tic-Tac-Toe, on the right, a Tic-Tac-Toe grid.

Dominator adds vertices to a set. The second player, Staller, forbids some vertices from being in the set.
When all the vertices are either in the set or forbidden to be in the set, Dominator wins if and only if the
set she has created is a dominating set of the graph.

Difficulty of a game

“Okay, but what do you mean by “a game is difficult”? Because Tic-Tac-Toe is not what I call a difficult
game.”

We are dealing here with general complexity in computer science. In Tic-Tac-Toe, since there are 9
squares in the grid, there are roughly 9! possible games: any game corresponds to an order in which the
squares are claimed. This phenomenon can be generalized to larger grids. For any finite grid, there is a finite
(but very large) number of games in the grid. The fact that there is a finite number of games shows that
optimal moves exists: by looking at all the possible games after each move, you can choose the one which
makes you win (if any). This property is generally true in positional games: as there is a finite number of
vertices, there is a finite number of moves. Thus, at any moment of the game, a player can choose an optimal
move. This property shows that either one player has a winning strategy, or both players can ensure a draw.
However, factorials grow very fast. Usually we cannot look at all the possible games. Therefore, we try to
determine which player has a winning strategy faster than by looking at all the possibilities.

Decision problems, such as determining which player has a winning strategy in a certain game, can be
divided into categories based on how much time and memory an algorithm needs to solve them. Without
going into details, if an algorithm runs in polynomial time, it is fast. Otherwise, it is not. Here most problems
are in PSPACE, a very large class of problems, that use polynomial space, but can take a long time to solve.
For now, it is sufficient to know that if a problem is PSPACE-complete, Truc-Muche will like it.

Interest of the study

“Did you just spend three years just playing Tic-Tac-Toe and seeing if Truc-Muche would find some games
funny or not?”

No. Positional games have several applications because they are related to other important areas of
computer science. The most natural connection is with hypergraph theory, since positional games are played
on hypergraphs. For instance, hypergraph coloring is a quite famous problem in hypergraph theory, and
some results about non 2-colorable hypergraphs were obtained from positional game theory. The three other
major links between positional games and other fields are with Ramsey theory, complexity theory and logic
theory. Without going further into details as several notions are required to explain them properly, strategies
in games can be explained using tools from logic. The study of positional games made it possible to reach
some results about different classes of model checking in logic and their complexity. Even if some of these

6

links will be developed in Chapter 1, we refer the reader to the articles from Bonnet et al. [BJS16, BGL+17]
for a more complete answer.

Study of different conventions

“Ok, so basically, your job is to take a game, prove that it is difficult, take another one, prove that it is
difficult and so on ?”

Not exactly. The study of positional games started in 1963, when they were introduced by Hales and
Jewett [HJ63], but it has become more popular recently, with the book of Hefetz et al. [HKSS14]. However,
most of the studies were made in a very specific set of rules that we aim to extend in order to have a more
general framework. We aim to find more general results about the structure of the hypergraph, and about
other sets of rules, called conventions. Tic-Tac-Toe is what we call a game in the Maker-Maker convention,
i.e. a game in which both players aim to fill up a hyperedge. But what happens if we change the rules ?
Say for instance that now the first player to align three marks loses instead of winning. We define different
conventions depending on whether the players want to fill up the hyperedges or not and on how the vertices
are claimed. Since one can prove that, in Maker-Maker games, the second player cannot win, his goal is
now to prevent the first player to win. This new ruleset is called Maker-Breaker and is the most studied
convention since the introduction of positional games. This thesis goes through the different conventions
and proves several complexity results on them.

Regarding the complexity aspect of the question, note that the complexity study of positional games is
quite trendy. Except for a result by Schaefer [Sch78] in 1978, most of the complexity results are recent.
Therefore, some aspects have not been studied much yet. An important part of our work has been the
treatment of positional games under the parameterized complexity paradigm. Since it is generally difficult
to compute the winner of the game, we aim to better understand the difficulty of the problem by considering
some of its parameters and what happens when we can control them.

Organization of this thesis

This manuscript is divided into six chapters. Most of the results that will be presented here have already
been published. This manuscript presents the articulation of all these results together and their contribution
to the framework of positional games. For example, the Super Lemma is presented for the first time in its
most general version, so that it can be applied in several chapters.

• In Chapter 1, we present the general framework of positional games, together with the six different
conventions that will be studied here. Since several aspects of graph theory and complexity theory will
also be required in this work, we introduce some of their definitions in order to make this manuscript
self-contained. We then focus on positional games, and present the history of their introduction. Next,
we focus on the complexity, both in the general case and when applied to positional games. Finally,
we present some general results that have several applications in this thesis.

• In Chapter 2, we focus on the general complexity of positional games. When studying positional games,
an important question is the computational complexity of computing the winner of a game. Among
the six positional game conventions studied in this dissertation, three of them, Maker-Breaker, Maker-
Maker and Avoider-Avoider, were already known to be PSPACE-complete. We prove that two others,
Avoider-Enforcer and Client-Waiter are also PSPACE-complete, and we provide direct examples of
these results, by proving that the domination game is also PSPACE-complete under these conventions.

• Chapter 3 focuses on classical Maker-Breaker games. The most studied ones are played on the edges
of graphs, where Maker tries to build some structure in the graph with the edges she claims. Most
of the previous studies of these games have not focused on the computational complexity. We present
here the first hardness results when computing their winners. Depending on the structure, different
complexity results are obtained. In this chapter, we prove that for most of the classical structures, the
game is PSPACE-complete, and we provide algorithms for simpler structures.

7

• The most classical way to play positional games on graphs is to claim the edges, the study of games
claiming the vertices is much more recent. Among the games studied in this way, one of the most
studied is the domination game. It was already known that this game is PSPACE-complete. When
this is the case, the next step in the study is to analyze the game more carefully to determine what
makes it difficult. This branch of study is called parameterized complexity. In Chapter 4 we focus on
the Maker-Breaker domination game from a parameterized complexity point of view, i.e., we look at
its complexity as a function of other parameters. Thus, we focus on the game where the players need
to win in a bounded number of moves, or on graphs with some bounded parameters, such as their
modular-width, their feedback edge set number or their distance to cluster.

• In Chapter 5, we keep working on the domination game, but we switch to the Maker-Maker convention.
Among the results in the Maker-Breaker convention, there is the fact that the winner on trees can be
computed in linear time. In this chapter, we prove that this is also the case in the Maker-Maker con-
vention, but the algorithm is much more difficult. This chapter will consist in providing the algorithm
and proving its correctness.

• Chapter 6 introduces scoring positional games as a way to go further in the study of positional games.
In fact, up to now, all the studies have focused on determining whether a hyperedge is filled up by a
player or not. Here, we merge the study of positional games with the scoring game theory to study
a quantitative version of Maker-Breaker games. In scoring positional games, Maker’s goal is to fill up
as many hyperedges as possible. We focus on this game played on graphs, where claiming any two
adjacent vertices is worth one point.

Collaborations and productions

During my Ph.D., I have had the opportunity to work with many people and to travel to many places. (Did
my advisors want to get rid of me ?). I have had the opportunity to travel to the Czech Republic, Germany,
Portugal, Serbia, and Sweden, either for collaborations or conferences, and to several French cities to start
new collaborations. I also had a total of 23 co-authors, coming from six different countries: Austria, France,
Germany, Serbia, Sweden, and United States. Most of these collaborations were supported by the ANR
P-GASE.

8

Chapter 1

Preliminaries and state of the art

Prove that you have already read some papers about games

This chapter introduces the different notions and objects that will be studied in this manuscript. It also
contains the historical aspects of positional games and some well-known results about them. In order to
make this thesis self-contained, some of these results will be proved here, since their exact source is often
hard to find. In Section 1.1, we will introduce the different definitions of positional game theory. Section 1.2
will present its historical study. In Section 1.3, we will present the complexity context of positional game
theory. Finally, in Section 1.4, we will introduce several statements that will be used in the next chapters.

1.1 Definitions

1.1.1 General definition of positional games

Positional games are a branch of combinatorial games. Consequently, they are perfect information and
deterministic, i.e. the players know all the information about the state of the game, and there is no random
event. First introduced by Hales and Jewett [HJ63] in 1963 as multiplayer games, positional games were
popularized as two-player games by Erdős and Selfridge [ES73] in 1973. In their most general definition,
positional games are played on the vertex set of a hypergraph, and the winning conditions depend on how
the hyperedges are filled up.

The board

Definition 1.1 (Hypergraph). A hypergraph H is a pair (X ,F) where X is a finite set of vertices, and
F ⊂ 2X is a set of hyperedges. H is generally called the board of the game, and F the winning sets.

The hypergraph is said to have rank k (or to be a k-hypergraph) if any f ∈ F has order at most k.
It is said to be k-uniform if any f ∈ F has order exactly k.

Since the winning conditions consist of filling hyperedges, the notion of transversal is quite important.
Indeed, claiming a transversal consists of preventing the opponent from filling a hyperedge.

Definition 1.2 (Transversal). Let H = (X ,F) be a hypergraph. A transversal f ⊂ X of H is a set of
vertices that intersect all the hyperedges of H. It is said to be minimal if it does not strictly contain another
transversal.

The transversal hypergraph (or dual hypergraph) of H, denoted by H∗ = (X ∗,F∗) is defined by X ∗ = X
and F∗ = {f ⊂ X | f minimal transversal of H}.

Note that the transversal of the transversal of a hypergraphH isH whenever we remove inclusion between
hyperedges.

9

B

A

A

Figure 1.1: On the left, the hypergraph corresponding to Tic-Tac-Toe, on the right, a Tic-Tac-Toe grid.

Sometimes, only a few elements of the hypergraph need to be considered in the game. Therefore, we also
present the notion of sub-hypergraph.

Definition 1.3 (Sub-hypergraph). Let H = (X ,F) be a hypergraph. A sub-hypergraph of H is a hypergraph
H′ = (X ′,F ′) with X ′ ⊂ X and F ′ ⊂ F .

Note that as H′ is a hypergraph, we have necessarily, F ′ ⊂ 2X
′
.

The rules

The two players alternate claiming vertices of X . The way the vertices are claimed, and the winner depend
on the convention considered with the hypergraph. There are several conventions for positional games, but
we will only focus on the six most studied.

Definition 1.4 (Maker-Maker game). Let H = (X ,F) be a hypergraph. A Maker-Maker game is played by
two players, Alice and Bob. Alice and Bob take turns claiming an unclaimed vertex of H, with Alice starting.
The first player to claim all the vertices of a hyperedge f ∈ F wins. If all the vertices are claimed without
any hyperedge being filled by a single player, the game ends in a draw.

This convention is for example the one of the famous Tic-Tac-Toe, which can be represented by a hyper-
graph as depicted in Figure 1.1

Definition 1.5 (Maker-Breaker game). Let H = (X ,F) be a hypergraph. A Maker-Breaker game is played
by two players, Maker and Breaker. Maker and Breaker take turns claiming each unclaimed vertex of H.
Maker wins if she claims all the vertices of a hyperedge f ∈ F . Otherwise, Breaker wins.

Definition 1.6 (Avoider-Avoider game). Let H = (X ,F) be a hypergraph. An Avoider-Avoider game is
played by two players, namely Alice and Bob. Alice and Bob take turns claiming an unclaimed vertex of H,
with Alice starting. The first player to claim all the vertices of a hyperedge f ∈ F loses. If all vertices are
claimed without any hyperedge being filled by a single player, the game ends in a draw.

Definition 1.7 (Avoider-Enforcer game). Let H = (X ,F) be a hypergraph. An Avoider-Enforcer game is
played by two players, Avoider and Enforcer. Avoider and Enforcer take turns claiming an unclaimed vertex
of H. Enforcer wins if Avoider claims all the vertices of a hyperedge f ∈ F . Otherwise, Avoider wins.

10

Definition 1.8 (Waiter-Client game). Let H = (X ,F) be a hypergraph. A Waiter-Client game is played by
two players, Waiter and Client. Each turn Waiter chooses two unclaimed vertices of H and offers them to
Client. Client selects and claims one of them, and Waiter claims the other. If only one vertex is left, it goes
to Client. At the end of the game, if Waiter has claimed all the vertices of a hyperedge f ∈ F , she wins.
Otherwise, Client wins.

Definition 1.9 (Client-Waiter game). Let H = (X ,F) be a hypergraph. A Client-Waiter game is played
by two players, Waiter and Client. Each turn Waiter chooses two unclaimed vertices of H and offers them
to Client. Client selects and claims one of them, and Waiter claims the other. If only one vertex is left, it
goes to Client. At the end of the game, if Client has claimed all the vertices of a hyperedge f ∈ F , he wins.
Otherwise, Waiter wins.

Note that it sometimes happens that the last unclaimed vertex goes to Waiter. However, we prefer to
give it to Client here because it better fits the definition of positional games. Indeed, since Client claims the
first vertex in a pair and Waiter the second, when there is only one vertex left, the last player to claim a
vertex was Waiter, and it seems more natural to give the last vertex to Client.

The first four conventions presented here are related to each other and are often separated as follows:

• Maker-Maker games and Maker-Breaker games, are called achievement games. They are games in
which the players try to claim vertices forming some structure.

• Avoider-Avoider and Avoider-Enforcer games, are called avoidance games. They are games in which
the players try to avoid that the vertices they have claimed form some structure.

• Maker-Maker games and Avoider-Avoider games, are called strong games. They are games in which
both players have the same goal.

• Maker-Breaker and Avoider-Enforcer games, are called weak games. They are games in which one
player has a goal and the second wants to prevent the former to succeed in it. Thus, in these games,
there is no draw.

Note that in weak games, it is possible to always claim all the vertices of the board, as if Maker or
Avoider has filled up a hyperedge, she will have it filled up at the end, and the outcome will not change. In
strong games, the game has to be stopped as soon as a hyperedge is filled up, otherwise, we cannot know
from a position which player has won if both players have filled up a hyperedge.

Despite that Maker-Breaker and Avoider-Enforcer games look very asymmetric as the two players of each
has different roles, by considering the transversal hypergraph, we obtain that the roles of either Maker and
Breaker or Avoider and Enforcer has been exchanged. Indeed, claiming a transversal consists exactly in
claiming one vertex in each hyperedge, and thus prevent the other player to fill up a hyperedge. Therefore,
several results obtained for a player have a pendant for the second one.

Strategies

To keep track of the moves made by each player, we define a position of the game as a state of the game
that can be reached by playing on the hypergraph.

Definition 1.10 (position). Let H = (X ,F) be a hypergraph. A position P in the game played on H is
a triple (H,X1,X2) such that X1,X2 ⊂ X and X1 ∩ X2 = ∅. X1 and X2 corresponds to the set of vertices
already claimed by the players.

Intuitively, a strategy, is a way of responding to every possible move of the opponent, which can be
translated by a move to play in every position of the game. It is a winning strategy if the player using this
strategy always reaches a position of the game in which he has won.

11

Definition 1.11 (Strategy). Let H = (X ,F) be a hypergraph. A Strategy on H = (X ,F) is a function
S : 2X × 2X → X such for any subset X1,X2 such that X1 ∩ X2 = ∅ and X1 ∪ X2 ̸= X , we have S(X1,X2) /∈
X1 ∪ X2.

A strategy S1 (resp. S2) is said to be a winning strategy for the first (resp. second) player if, for any
strategy S2 (resp. S1) and any sequence of claimed vertices (X 1

1 ,X 1
2), . . . , (X k

1 ,X k
2) such that (X 1

1 ,X 1
2) =

(∅, ∅), and for any 1 ≤ i < k, we have X i+1
1 = X i

1∪S1(X i
1,X i

2) and X i+1
2 = X i

2∪S2(X i+1
1 ,X i

2), the first (resp.
second) player reaches a position satisfying the winning conditions of the convention before his opponent.

Note that several positions of the game are inaccessible, or a strategy can prevent them to appear, and
therefore, a strategy does not necessarily need to be defined for all (2X × 2X) to be applied.

Winners and outcomes

Since in each convention, the game ends in at most |X | moves, the set of all possible positions is finite. Thus,
a strategy can be computed by looking at every position. Therefore, in every convention, it is possible to
prove that either one player has a winning strategy or both players can ensure a draw. From now on, we will
suppose that the players will play optimally, i.e. if a player has a winning strategy, he or she will play it.

Definition 1.12 (outcome). The outcome of a position P is defined as the player having a winning strategy,
if any, or Draw otherwise. It is denoted by o(P).

The outcome of a game on a hypergraph H is defined as the outcome of the position (H, ∅, ∅), and we
can write o(H) directly.

• In Maker-Maker or Avoider-Avoider games:

– A if Alice has a winning strategy.
– B if Bob has a winning strategy.
– D if both players have a draw strategy.

• In Maker-Breaker games:

– M if Maker has a winning strategy.
– B if Breaker has a winning strategy.
– N if the next player to move has a winning strategy.
– P if the second player to move has a winning strategy. (Note that P stands for ”previous” as the

player going second is the previous player if some moves have already been made.)

• In Avoider-Enforcer games:

– A if Avoider has a winning strategy.
– E if Enforcer has a winning strategy.
– N if the next player to move has a winning strategy.
– P if the player going second has a winning strategy.

• In Waiter-Client or Client-Waiter games:

– C if Client has a winning strategy.
– W if Waiter has a winning strategy.

The two main goals in game theory are, given a game, to compute a winning strategy and to compute the
outcome. Note that sometimes, the outcome can be computed with non-constructive arguments, and thus,
it is possible to know which player has a winning strategy, but we cannot describe that strategy. Complexity
studies focus mainly on the computation of the outcome, since the answer to a decision problem must be
either ⊤ or ⊥. Complexity will be discussed in Section 1.3, for now, we will define the different possible
outcomes for the different conventions.

Now that the outcomes are defined, the decision problem related to them is the following one:

12

Problem 1.13.
Input: A hypergraph H together with a convention and an outcome O.
Output: ⊤ if H has the outcome O under the considered convention.

Note that as the game is a two player game, it is often the case that the decision problem takes as input
a hypergraph and a player starting, and asks which player has a winning strategy. If it happens, we often
state this decision problem a “computing the winner of a positional game”.

Optimal strategies and outcomes

Even though these outcomes are all the theoretical outcomes that can be obtained from a game position,
some of them are not real outcomes of the game, since if the game is played optimally, they cannot appear.

Lemma 1.14 (Hales and Jewett [HJ63]). Bob cannot have a winning strategy in a Maker-Maker game, i.e.
the outcome B does not exist in Maker-Maker games.

Proof. By contradiction, suppose that Bob has a winning strategy S on H = (X ,F). The proof is a strategy
stealing argument for Alice:

• First Alice claims an arbitrary vertex x0 ∈ X . We denote by Px0 the current position of the game and
by P the position P where x0 is removed from the vertices claimed by Alice.

• Let XA,XB are already claimed by Alice and Bob respectively in P . Whenever Bob claims a vertex
x ∈ X in the position Px0

, Alice considers the vertex y = S(XA ∪{x} \ {x0},XB) that Bob would have
claimed according to S (in P) if she had claimed x. If y ̸= x0, she claims y in Px0 . Otherwise, she
claims another available vertex x′0 and now considers the position Px′

0
.

According to this strategy, at any point in the game, the vertices played by Bob in Px0 are a subset of the
vertices played by Alice against S in P , and the vertices played by Alice in Px0 contain at least the vertices
played by Bob after the same number of moves following S in P . Therefore, Alice has a winning strategy,
which contradicts that Bob has one.

Note that this lemma does not provide a strategy for Alice that ensures a draw or a win. A direct
consequence of this lemma is that if there is no draw on H, then Alice wins the Maker-Maker game on H.
In contrast with Maker-Maker games, in Avoider-Avoider games, all three outcomes are possible. Indeed,
consider the hypergraphs H1 = ({x}, ∅),H2 = ({x}, {{x}}) and H3 = ({x, y}, {{x}}), we have that H1 ends
in a draw, Bob wins in H2 and Alice wins in H3.

Next lemma deals with zugzwang in games. A zugzwang is a position of a game where no player wants
no move. In achievement games, it shows that there is no zugzwang, and therefore, it never benefits a player
to skip his turn.

Lemma 1.15 (Folklore). Let H = (X ,F) be a hypergraph. For any position P = (H,X1,X2), if a player has
a winning (resp. drawing) strategy going second on P in the Maker-Breaker or Maker-Maker convention, he
has one going first on P , i.e., the outcome P cannot exist in the Maker-Breaker convention.

The proof of Lemma 1.15 being very similar as the proof of Lemma 1.14, it will not be provided here. A
similar result exists in Avoider-Enforcer games. However, as in general, in the Avoider-Enforcer convention,
the players will try to avoid the vertices in several hyperedges, the first moves are not very significant on the
outcome. Therefore, the last moves are more important. More specifically, a player who wins by playing the
last move wins by playing the second to last move.

Lemma 1.16 (Galliot [Gal23, GGGP]). Let H = (X ,F) be a hypergraph. For any position P = (H,X1,X2)
in the Avoider-Enforcer convention, if a player has a winning strategy when he claims the last vertex of the
graph (i.e. going first if the number of vertices is odd, or second when the number of vertices is even), he
has one when he claims the second-to-last vertex.

13

Proof. Even if in theory, four cases have to be proved, by similarities among them, we will only provide the
proof that if Avoider wins going second when the number of vertices is even, he also wins going first. Let S
be a strategy for Avoider going second. Consider the following strategy:

• First, Avoider claims any vertex x0 ∈ X

• Now, when Enforcer claims a vertex y, Avoider claims the vertex x he would have claimed as an answer
to y according to S. If x = x0, then he claims an arbitrary vertex x′0 and considers it as the new x0.

At the end of the game, Avoider will have claimed vertices according to S as if Enforcer had never claimed
x0 and had let it as the last vertex to be claimed by Avoider. Therefore, as S was a winning strategy, Avoider
does not claim all the vertices of a hyperedge and therefore has won.

This lemma leads to the introduction of the outcome SL if the second to last player has a winning
strategy in the Avoider-Enforcer convention. Therefore, the only three outcomes in Avoider-Enforcer games
are A, E and SL.

1.1.2 Link between the conventions

The various conventions presented here are not completely independent. The following statements give some
implications about the outcomes of the different conventions.

Lemma 1.17 (Folklore). Let H = (X ,F) be a hypergraph. Suppose that Breaker wins the Maker-Breaker
game on H while going second, i.e. the outcome of H is B. Then the outcome of the Maker-Maker game
played on H is a draw, i.e. its outcome is D.

Proof. Suppose that Breaker has a winning strategy S going second in the Maker-Breaker game played on
H = (X ,F). Recall that, by Lemma 1.14, the outcome is either A, or D in the Maker-Maker convention.
If Bob plays exactly the strategy S, by construction, as it is winning for Breaker in the Maker-Breaker
convention, Alice cannot fill up a hyperedge. Therefore, she cannot win and the outcome is D.

Note that the contrary is false in general: there exists some hypergraph H on which the outcome in
the Maker-Maker convention is D, but Maker can win in the Maker-Breaker convention. For instance in
Tic-Tac-Toe, it is well known that the outcome in the Maker-Maker convention is D, but the outcome in the
Maker-Breaker convention is N . For the readers that are not convinced that Maker wins going first in the
Maker-Breaker convention, a proof will be provided later as illustration of Theorem 1.26.

The previous lemma can also be applied in avoidance games, with the following statement:

Lemma 1.18 (Folklore). Let H = (X ,F) be a hypergraph. If Alice (resp. Bob) has a winning strategy on
H = (X ,F) in the Avoider-Avoider game, then Enforcer has a winning strategy in the Avoider-Enforcer
game played on H going first (resp. second).

Proof. Suppose that Alice (resp.Bob) has a winning strategy S on H = (X ,F). Suppose that Enforcer
plays S going first (resp. second) in the Avoider-Enforcer game played on H. By construction of S, Bob
(resp. Alice) was supposed to claim all the vertices of a hyperedge. Therefore, this also happens in the
Avoider-Enforcer convention, and Enforcer wins.

These two implications are the main reasons explaining why weak and strong games are defined this way:
a win of Maker (resp. Enforcer) in the Maker-Breaker (resp. Avoider-Enforcer) convention is called a weak
win, as it does not imply any result for the Maker-Maker or the Avoider-Avoider convention. Reciprocally, a
win of Breaker (resp. Avoider) in the Maker-Breaker (resp. Avoider-Enforcer) convention is called a strong
draw, as it implies that Bob can draw in the Maker-Maker (resp. Avoider-Avoider) convention.

Finally, Beck [Bec02] has conjectured informally that if Maker (resp.Breaker) wins the Maker-Breaker
game on some hypergraph H = (X ,F), then Waiter wins the Waiter-Client (resp. Client-Waiter) game
played on H. Later, in 2009, Csernenszky, Mándity, and Pluhár [CMP09] have stated this conjecture more

14

Figure 1.2: The counter example hypergraph of Beck’s conjecture: Breaker wins in the Maker-Breaker
convention, but Client wins in the Client-Waiter convention.

formally and proved that it holds in several known positional games as k-in-a-row or the Shannon Switching
game. The main reason of this conjecture is that Waiter have much more control than Client, Maker or
Breaker, as any move of Waiter constraints the move of Client. Therefore, the study of Waiter-Client
and Client-Waiter games have partially been considered to understand better some Maker-Breaker games.
However, even if this conjecture holds for several games, it has been disproved by Knox [Kno12] in 2012 for
the general case. The counter-example hypergraph is provided in Figure 1.2, and we refer the reader to the
paper of Knox for the proof that it disproves the conjecture.

Extra sets

Similarly to the fact that, according to Lemma 1.15, the players always want to move in achievement games,
it would be natural to think that adding other winning sets in Maker-Breaker games will benefit Maker.
This result can be stated in a more general way that can be applied to several conventions:

Lemma 1.19 (Folklore). Let H = (X ,F) be a hypergraph and let H′ = (X ′,F ′) be a sub-hypergraph of H.
If Maker (resp. Client, Waiter) wins the Maker-Breaker (resp. Client-Waiter, Waiter-Client) game on H′,
then Maker (resp. Client, Waiter) wins the Maker-Breaker game on H.

Moreover, if the number of vertices of H and H′ are both odd or both even, this result also holds for
Enforcer in the Avoider-Enforcer convention.

Proof. We do the proof in the Maker-Breaker convention. Let S be a winning strategy for Maker on H′.
Maker plays a strategy in H as follows:

• If Maker goes first, he plays the vertex x ∈ X that would have been played by S in H′.

• When it’s Maker’s turn, if the last move of Breaker was not a vertex in H′, Maker considers that he
has played any unclaimed vertex instead.

Following this strategy, the vertices that Maker will claim in H will contain vertices corresponding to S
in H′. Therefore, she will fill up a hyperedge and win.

15

In Waiter-Client games, the same proof works, since Waiter can only choose pairs of vertices in H′ until
he wins.

In Client-Waiter games, the same proof almost works, except that Waiter can propose one vertex of H′

and one vertex outside H′. If this is the case, Client selects the vertex in H′.
In Avoider-Enforcer games, we apply the same proof, using the fact that the number of vertices in H\H′

is even. Therefore, if Avoider claims in H\H′, Enforcer answers in H\H′ and these two moves won’t change
the moves made on H′.

The parity argument in the Avoider-Enforcer case is very important, as changing the parity of the number
of moves can change the winner. As shown in Lemma 1.16, what really matters in Avoider-Enforcer games
is the player who plays the last move and not the first one. A counter example of Lemma 1.19 when the
parity changes is provided in Figure 1.3

(a) Avoider loses going first (b) Avoider wins going first

Figure 1.3: Example of a graph on which Enforcer wins, in Avoider-Enforcer, but not after adding a vertex
and a hyperedge. Both hypergraphs have outcome SL

Since the second player cannot win in Maker-Maker games, one might think that Lemma 1.19 can also
be applied to Maker-Maker games. This is generally false, and this phenomenon is known as the extra set
paradox, presented by Beck [Bec08]. There exists some Maker-Maker games in which the first player has a
winning strategy, but she has not if a winning set is added to the game. The smallest known example of this
paradox is given in Galliot’s thesis [Gal23] and is provided in Figure 1.4.

1.1.3 Definitions about graphs

Even if the formal definition of positional games is made on hypergraphs, the most classical positional games
are played on the edge set of graphs, and the winning sets are some structures of the graph. Most of these
classical games were introduced by Beck, and we refer the reader to his book Combinatorial game, Tic-Tac-
Toe Theory [Bec08] for a complete history of these games. For readers unfamiliar with graph theory, we
present here most of the graph-theoretic notions that will be used in this manuscript, and we refer the reader
to Bondy and Murty [BM76] for a more complete presentations of graphs.

Vocabulary in graphs

A (simple) graph G is a 2-uniform hypergraph. In general, we write it G = (V,E), where V is the set of
vertices and E ⊆ V × V is the set of edges. Sometimes, we will write V (G) and E(G) to refer to the set of
vertices or edges of G. A subgraph of G is a graph G′ = (V ′, E′) such that V ′ ⊆ V and E′ ⊆ E. If G′ is a

(a) Outcome: A. (b) Outcome: D.

Figure 1.4: The extra-set paradox in Maker-Maker Games

16

subgraph of G, we write G′ ⊆ G. If V ′ ⊆ V (resp. E′ ⊆ E), the subgraph induced by V ′ (resp. by E′) is
the graph G′ = (V ′, E ∩ (V ′ × V ′)) (resp. G′ = ({v,∃e′ ∈ E′, v ∈ e′}, E′)). Let u, v ∈ V be two vertices. If
(u, v) ∈ E, we say that u is a neighbor of v or that u and v are adjacent. The open neighborhood of v, denoted
by N(v) is the set of neighbors of v. The closed neighborhood of v, denoted by N [v] is N [v] = N(v) ∪ {v}.
The degree of v is d(v) = |N(v)|. A leaf ℓ ∈ V is a vertex of degree 1. An isolated vertex v ∈ V is a vertex
of degree 0.

Let G = (V,E) be a graph. Let u, v ∈ V be two vertices.
A trail of length k between u and v is a set of vertices u1 = u, . . . , uk+1 = v with k ≥ 1 such that for any

1 ≤ i ≤ k, we have (ui, ui+1) ∈ E. If in this trail, all the vertices are different, this trail is a path, denoted
by Pk+1. If only u1 and uk+1 are equal, and k ≥ 2, this trail is a cycle, denoted by Ck. A set C ⊂ V is said
to be connected if for any u, v ∈ C, there exists a path between u and v. If C is maximal for inclusion, C is
said to be a connected component of G. We denote by CC(G) the set of connected components of G. If G
has a single connected component, we say that G is connected. A graph T = (V,E) is said to be a forest if
it contains no cycle. If it is a connected forest, we say that T is a tree.

Structures in graphs

Now that graphs are defined, several games are constructed so that the hyperedges correspond exactly to
some structure in the graph. We introduce here the structures that will be studied in this manuscript.

Let G = (V,E) be a graph.
A Hamiltonian cycle of G is a cycle that contains all the vertices of G. A matching in G is a set of edges

M ⊂ E, such that for any e1, e2 ∈M , we have e1 ∩ e2 = ∅. It is said to be a perfect matching if V is covered
by M . A spanning tree T of G is a subgraph of G which is a tree and such that V (T) = V . A set I ⊂ V
is said to be stable or independent, if for any u, v ∈ I, (u, v) /∈ E. A dominating set D ⊂ V is a set such
that ∪

v∈D
N [v] = V . A Feedback vertex set S ⊂ V is a set such that G \ S is a forest. A Feedback edge set

S ⊂ E is a set of edges such that G \ S is a forest. A vertex cover S ⊂ V is a set of vertices such that any
edge of E is adjacent to at least one vertex of S. We say that two vertices u, v ∈ V have the same type if
N(v) \ {u} = N(u) \ {v}. The graph G has neighborhood diversity at most w if there exists a partition of V
into at most w sets such that the vertices in each set have all the same type.

The neighborhood diversity is a graph parameter introduced by Lampis [Lam12] to generalize FPT
algorithms parameterized by vertex cover to larger classes of graphs. Note that each set must induce a
clique or an independent set. Furthermore, if a set of graphs has bounded vertex cover, then it has bounded
neighborhood diversity.

Classes of graphs

While studying some games on graphs, it will happen that a problem is too hard to be solved on general
graphs. When this is the case, a classical way to handle the problem is to study it on some classes of graphs.
Here we introduce most of the classes that will be studied.

We first present the two following operations:

• If G and H are two graphs, G ⊗ H refers to the join between G and H, i.e., the graph obtained by
putting together one copy of G and one of H, and adding any edge between a vertex of G and a vertex
of H.

• If G and H are two graphs, G∪H refers to the union of G and H, i.e., the graph obtained by putting
together one copy of G and one of H, but no edges between G and H.

Let G = (V,E) be a graph, and let n,m be two integers.
G is a cograph if it can be constructed from isolated vertices using only ⊗ and ∪ operations. The

graph Kn called the clique or complete graph on n vertices is the graph G = (V,E) with |V | = n and
E = {(u, v) ∈ V × V, u ̸= v}. A graph is said to be a cluster if it is a union of cliques. The distance to

17

cluster of a graph G is the size of a smallest vertex subset whose deletion makes G a cluster. G is said to
be split if its vertex set V can be partitioned into two sets K,S such that the subgraph induced by K is a
clique and the one induced by S is a stable set. G is said to be bipartite if its vertices can be partitioned into
two sets V1 and V2 such that E ⊂ V1 × V2. The graph Kn,m called the complete bipartite graph is the graph
G = (V,E) with V = (V1 ∪ V2) with |V1| = n, |V2| = m and E = V1× V2. If n = 1, K1,m is said to be a star.
G is planar if it can be drawn on the plane in such a way that its edges intersect only at their endpoints.

1.1.4 Some examples of games

In this section, we will introduce the different positional games on graphs that will be studied in this
manuscript.

Games on edges

Most of the studies in positional games consist of studying games played on the edge sets of graphs. Alter-
nately, the players claim edges of a graph, and the hyperedges consist of some structure of the graph. The
best-known game on edges is probably SIM, an Avoider-Avoider game played on a clique, in which the first
player to claim three edges that from a triangle loses. The H-game is a natural generalization of this game,
see Figure 1.5.

A D

B
C

F E

Figure 1.5: Example of position in the game SIM. If Alice (in red) claims for instance the edge (D,E), she
loses by closing the triangle BDE.

Definition 1.20 (H-game). Let H be a graph. The H-game is defined on a graph G by the hypergraph
H = (X ,F) where X = E(G) and F = {E′ ⊂ E(G), E′ induces a copy of H}.

If H = Kk (resp. H = K1,k) we will call this game the clique-game (resp. star-game).

Definition 1.21 (Connectivity game). The connectivity game is defined on a graph G by the hypergraph
H = (X ,F) where X = E(G) and F = {E′ ⊂ E(G), E′ induces a spanning tree of G}.

Definition 1.22 (Perfect matching game). The perfect matching game is defined on a graph G by the
hypergraph H = (X ,F) where X = E(G) and F = {E′ ⊂ E(G), E′ is a perfect matching of G}.

Definition 1.23 (Hamiltonicity game). The hamiltonicity game is defined on a graph G by the hypergraph
H = (X ,F) where X = E(G) and F = {E′ ⊂ E(G), E′ is a Hamiltonian cycle of G}.

Note that in all of the above examples, by definition of positional games, the edges claimed by the player
must contain a hyperedge in order to win (or lose in avoidance games). It is not necessary that these edges
form exactly the aimed structure.

18

Games on vertices

The other way to play positional games on a graph is to claim vertices instead of edges. Again, it will
be natural to consider some structure of the graph as the winning sets. Here we present the domination
game. Several other “domination games” have been introduced in the literature under different rulesets,
see [ABBS02, BKR10] for some examples. Here we focus on the positional game version of the game,
introduced in the Maker-Breaker convention by Duchêne et al. [DGPR20] in 2020.

Definition 1.24 (Domination game). The Maker-Breaker domination game is defined on a graph G. Two
players, Dominator and Staller, alternate claiming unclaimed vertices of the graphs. Dominator wins if she
claims all the vertices of a dominating set. Otherwise, Staller wins.

In the case of the domination game, if G is a graph, the natural hypergraph to consider would have one
hyperedge for each dominating set of G. However, a graph usually has an exponential number of dominating
sets. Therefore, if the underlying hypergraph is required, it is often more convenient to consider its dual,
i.e., the hypergraph of the closed neighborhoods. Indeed, If Breaker fills up the closed neighborhood of some
vertex, Maker will not dominate this vertex, and a graph on n vertices has at most n closed neighborhoods.
Because of this duality and that both points of view can be used in this game, we will refer to the players as
Dominator and Staller instead of Maker and Breaker. Dominator aims to claim the vertices of a dominating
set of G and Staller aims to claim the closed neighborhood of some vertex in G.

1.2 History of positional games

In this section, we will present how positional games were introduced, their connection with other areas of
computer science, and the first important results on them. Since after their introduction in 1963, most of the
studies on positional games were focused on complete graphs, we will present here their study on complete
graphs, and we postpone the study of their complexity to Section 1.3.

1.2.1 The beginning: Maker-Maker games

Among the various conventions, the Maker-Maker convention is the most natural. Therefore, when Hales
and Jewett [HJ63] introduced positional games, one motivation for the introduction of positional games was
the generalization of the famous Tic-Tac-Toe game, and the initial study of positional games focused on
the Maker-Maker convention. Here, both players want to fill up a hyperedge of a given hypergraph. These
games are indeed the most likely to be played in real life. Hales and Jewett [HJ63] directly provided some
general results, as Lemma 1.14, and a weaker version of pairing strategies, which will be presented later in
Section 1.4. Then, they introduced the first generalization of Tic-Tac-Toe: the nd game, which consists of
playing Tic-Tac-Toe on the d-dimensional n-grid, the classical Tic-Tac-Toe being the 32 game. They proved
that, if n ≥ 3d − 1, then this game ends in a draw. Conversely, for any n, if d is large enough, they proved
that the first player has a winning strategy.

The other major generalization of Tic-Tac-Toe is the k-in-a-row game. The k-in-a-row game is played
on a potentially infinite grid, and the winning sets are any set of k vertices aligned, either in a row, in a
column or in a diagonal. This game includes the popular 5-in-a-row game Gomoku, which was introduced
in the 1800s and is still played today. While 4-in-a-row is an easy win for the first player [Folklore], Alis
et al. [AvdHH96] proved that the first player wins on the 15*15 grid. However, it is still unknown whether
this result can be generalized to larger grids or not. Most of the other known results about the Maker-Maker
k-in-a-row game come from the Maker-Breaker study of the game.

1.2.2 Introduction of Maker-Breaker games

According to Lemma 1.14, the second player cannot win in the Maker-Maker convention. Therefore, Chvátal
and Erdős [CE78] have introduced the Maker-Breaker convention in 1978. Under this convention, both

19

players have simpler goals: while in the Maker-Maker convention each player’s goals are both to fill up a
hyperedge and to prevent their opponent from filling one up, in the Maker-Breaker convention, two players
compete for a single goal. Since there is no draw in Maker-Breaker games, one player has a winning strategy.
k-in-a-row is a famous example of a studied game, that was introduced in the Maker-Maker convention,
but whose study is now focused on the Maker-Breaker convention. In the Maker-Breaker version of this
game, the result from Alis et al. [AvdHH96] proves, by Lemma 1.19, that the game is a win for Maker in
any grid of dimension greater than 15 ∗ 15 for k ≤ 5. In 1980, Zetters proved that Breaker can ensure a
draw if k ≥ 8 [Zet80] by providing a paving on the infinite grid that blocks any set of 8 aligned cases. This
result directly implies that k-in-a-row is a draw on any grid in the Maker-Maker convention for k ≥ 8. The
outcomes for k = 6 and k = 7 are still open.

Since Maker-Breaker games were introduced due to the fact that Bob cannot win in Maker-Maker games,
Maker-Breaker games are generally studied with Maker going first. This will always be the case in this
manuscript unless something is specified.

Although Maker-Breaker games seem to be artificial and were introduced only as a tool for understanding
Maker-Maker games, some well-known games can be formalized as Maker-Breaker games. For example, the
game of HEX is played on a hexagonal grid by two players, namely Red and Blue, who each get two opposite
sides of the grid and try to connect them with a path of their color. This game is not a Maker-Maker
game, since the winning sets for the two players are different, but it can be modeled in the Maker-Breaker
convention, since at the end of the game, the only way to prevent a red path from connecting two opposite
sides is to build a blue path between the other two.

1.2.3 Toward general results on positional games: Edős-Selfridge criterion

Soon after their introduction, some strong results were found on Maker-Breaker games. The most important
is probably the Erdős-Selfridge criterion, which states that if there are not so many hyperedges and if they
are large enough, Breaker will have the time to play in each of them. Formally, it is stated as follows:

Theorem 1.25 (Erdős-Selfridge [ES73]). Let H = (X ,F) be a hypergraph.

• If
∑
f∈F

2−|f | <
1

2
, then Breaker wins the Maker-Breaker game on H going second.

• If
∑
f∈F

2−|f | < 1, then Breaker wins the Maker-Breaker game on H going first.

This theorem can quickly solve some games. For instance, in the 4-in-a-row game played on a 4 ∗ 4 grid,
There are ten hyperedges of order four. Therefore,

∑
f∈F

2−|f | = 10
16 , which proves that Breaker wins going

first.
Despite the fact that Erdős-Selfridge’s criterion is very general and can often be used to prove that some

games are wins for Breaker, a weaker criterion, due to Beck [Bec82] in 1982, can sometimes prove that Maker
can win on some games. This criterion uses something quite important for Maker, the maximum pair degree,
usually denoted by ∆2(H), and defined as the largest number of hyperedges containing a pair of vertices.
Formally, we have:

∆2(H) = max {|{f ∈ F : u, v ∈ f}| : u ̸= v ∈ X}

.
Intuitively, the higher this parameter is, the more likely it is that, whenever Maker plays a move, Breaker

can respond with a move that touches the same hyperedges.

Theorem 1.26 (Beck [Bec82]). Let H = (X ,F) be a hypergraph, If∑
f∈F

2−|f | >
∆2(H)|X |

8

20

then Maker wins the Maker-Breaker game on H going first.

Sketch of the proof. (Theorem 1.25 and Theorem 1.26)
The main idea of the proofs of Theorem 1.25 and Theorem 1.26, is to define a potential function p(H) =∑

f∈F
2−|f |, and to play a strategy that optimizes the potential after each move of the considered player, where

the hypergraph is updated after each move, Maker aiming to maximize the potential, and Breaker aiming
to minimize it. A move of Maker removes the claimed vertex from the hyperedges containing it, while a
move of Breaker removes the hyperedges containing the claimed vertex. With these updates, Maker’s moves
increase the potential, while Breaker’s moves decrease it. When all the vertices have been played, we have
|f | = 0 for any hyperedge f , and therefore, the potential is an integer. If it is 0, Breaker has won as there is
no hyperedge left. If it is at least one, Maker has managed to fill up a hyperedge and therefore has won. □

Using this result, we can prove that Maker wins the Maker-Breaker Tic-Tac-Toe going first. Even if
Theorem 1.26 cannot be applied on the empty grid, if Maker starts claiming the center vertex, after any
answer of Breaker, there will be three hyperedges of order 2 and at least two hyperedges of order 3. Therefore,
we will have

∑
f∈F

2−|f | ≥ 3 ∗ 1
4 + 2 ∗ 1

8 = 1. In Tic-Tac-Toe, we have ∆2(H) = 1. Thus, after two moves,

|X | = 7, and
∑
f∈F

2−|f | ≥ 1 ≥ 7
8 . Therefore, Maker has a winning strategy in Maker-Breaker convention

starting with playing the middle of the grid.
All games on edges presented until now are easy Maker wins when the size of the board is large enough:

Hefetz et al. [HKSS14] showed that, on a complete graph, Maker can always win.

1.2.4 Biased Maker-Breaker games

Intuitively, the number of threats in a complete graph is large enough so that Maker can always create any
structure.

Because Maker can always win in large enough graphs in most of the classical Maker-Breaker games, bias
have been introduced to balance the game and give a chance to Breaker. The presentation of games that
have been done until known is said unbiased, as both players claim a single vertex per turn.

Definition 1.27 (Biased Maker-Breaker game). Let H = (X ,F) be a hypergraph and let p, q ≤ 1 be two
integers. The biased (p : q) Maker-Breaker game on H is defined similarly to the Maker-Breaker game on H,
except that when it is Maker’s turn, she claims p vertices and when it is Breaker’s turn, he claims q vertices.
The values p and q are then called the bias of Maker and Breaker respectively.

Note that the unbiased Maker-Breaker game corresponds to p = q = 1. Since the bias has been introduced
to balance the game when the unbiased case is favorable to Maker, the value b = q

p is quite important, and

we will often consider (1 : b) games instead of (p : q) games. By simplicity, a game played with bias (1 : b)
will be said to be played with a bias b.

Lemma 1.28 (Folklore). Let H = (X ,F) be a hypergraph. If Breaker wins on H with a bias b, he wins on
H with a bias b′ for any b′ ≥ b.

A consequence of this lemma is that, for any hypergraph H there exists a minimum value of b0, called
the threshold bias such that Maker wins the (1 : b) Maker-Breaker game played on H if and only if b < b0.
The threshold bias is well-defined on any hypergraph such that F ̸= ∅, and such that Maker cannot win
with his first move. Today, one of the main studies in positional games consists in computing the threshold
bias on different games.

By studying biased games, one can aim for general results similar to those known in unbiased games.
Beck [Bec82] has generalized Theorem 1.25 to biased games.

Theorem 1.29 (Beck [Bec82]). Let H = (X ,F) be a hypergraph and let p, q ≥ 1 be two integers. Suppose
that

21

∑
f∈F

(1 + q)−|f |/p <
1

1 + q

Then Breaker wins the (p : q) Maker-Breaker game played on H.

Theorem 1.26 can be stated in the biased case to give a sufficient condition for Maker to win:

Theorem 1.30 (Beck [Bec82]). Let H = (X ,F) be a hypergraph and let p, q ≥ 1 be two integers. If

∑
f∈F

(
p+ q

p

)−|f |

>
p2q2∆2(H)|X |

(p+ q)3

then Maker wins the Maker-Breaker game on H.

Another major theorem in biased games is due to Bednarska and Luczak [BL00], who give a bound on the
threshold bias for the H-game for any graph H. An important part of their proof is that, if the hypergraph
is large enough, Maker wins with high probability even by playing randomly.

Theorem 1.31 (Bednarska-Luczak [BL00]). Let H be a graph which contains at least three nonisolated
vertices. There exists constants c0, C0 and n0 such that for every n ≥ n0:

• if b ≤ c0n1/m(G), then Maker wins the H-game played on Kn with bias b,

• if b ≥ C0n
1/m(G), then Breaker wins the H-game played on Kn with bias b,

where m(G) = max
H⊂G

|V (H)|≥3

|E(H)| − 1

|V (H)| − 2

This result is very strong, since it gives both lower and upper bounds for every nontrivial graph H.
Moreover, these bounds are tight up to multiplicative constants. However, the proof of this theorem relies
on the fact that, since H is fixed, if its size is small enough compared to the board of the game G, by playing
randomly, the edges claimed by Maker, will behave as a random graph. Therefore, the probability that the
graph induced by Maker’s edges contains a copy of H depends on its density, which gives the bound for the
threshold bias. This result does not hold if the aimed winning structure in G has a size that depends on
G, which is the case for the connectivity game, the hamiltonicity game or the perfect matching game. For
these three games, the threshold bias is O(n

log(n)). For the first game, this result is known from Chvátal and

Erdős [CE78]. For the second and third ones, only the upper bound was given by Chvátal and Erdős, who

proved that, for any ε > 0, if b ≥ (1+ε)n
log(n) for some constant c, Breaker can isolate a vertex. The two lower

bounds are then obtained Krivelevich [Kri11] in 2011, proving that, for any ε, Maker wins if b ≤ (1−ε)n
log(n)

for the hamiltonicity game. As a consequence of this result, the threshold bias is also n
log(n) for the perfect

matching game, since if a graph has an even number of vertices, a Hamiltonian cycle contains a perfect
matching, which proves that the last bound is also tight.

Note that this idea of playing randomly had already been stated by Erdős, as the probabilistic intu-
ition, which states that the outcome of an optimally played game should not differ asymptotically from
the same game played randomly. This intuition is still used as a conjecture and is still studied today, see
Nenadov [Nen23].

Definition 1.32 (Erdős-Selfridge [ES73]). Let H = (X ,F) be a hypergraph. Consider a random partition
of X into two sets VM , VB. The probabilistic intuition states that, if (H, VM , VB) is a winning position for
Maker (resp. Breaker) with high probability, then Maker (resp. Breaker) wins the Maker-Breaker game on
H.

22

This intuition explains some later results on positional games on random graphs. Let G(n, p) be a random
graph with n vertices on which each edge exists with probability p. Stojaković and Szabó [SS05] computed
the threshold probability pF such that Maker wins on G(n, p) almost surely if and only if p ≥ pF . They
proved that asymptotically, as n goes to infinity, for the connectivity game, the perfect matching game, the
clique game and the Hamiltonian cycle game, pF and the threshold bias differ at most by a multiplicative
constant.

1.2.5 Misere version: Avoider-Enforcer games

A classical study in combinatorial games is the misere version of games, i.e. the transformation of winning
conditions into losing conditions. This is what happens in positional games when dealing with avoidance
games. The Avoider-Avoider convention is the misere version of the Maker-Maker convention. The well-
known SIM game, introduced by Simmons [Sim68] in 1968 and presented in Figure 1.5, is played under this
convention.

Avoider-Enforcer games were introduced by Lu [Lu91] under the name Antimaker-Antibreaker games as
the misere version of Maker-Breaker. The standard name of this convention, Avoider-Enforcer (or sometimes
Avoider-Forcer), has been popularized by Hefetz and his co-authors after 2007 [HKS07a, HKSS07, HKS07b,
Hef07]. Note that several studies of this convention consider partial avoidance, i.e., Avoider loses if she
claims a certain fraction of a hyperedge, rather than the entire hyperedge, but we will not focus on that
study here. A strong connection between Avoider-Enforcer and Maker-Breaker has quickly emerged, as Lu
has proved the following criterion, which is similar to the Erdős-Selfridge criterion in Maker-Breaker games.

Theorem 1.33 (Lu [Lu91]). Let H = (X ,F) be a hypergraph, if∑
f∈F

2−|f | < 1

then Avoider wins the Avoider-Enforcer game on H.

However, most of the early studies considered that Avoider loses if he claims more than a fraction of
(1−ε) vertices from a hyperedge for ε positive. The biased version of Avoider-Enforcer, introduced by Hefetz
et al. [HKS07a], consists, as in the Maker-Breaker version of the game, of letting Avoider and Enforcer claim
p and q vertices per move respectively. The next point of the study should be, as for Maker-Breaker games,
to introduce the threshold bias. But, this is not possible here because, with this definition, biased Avoider-
Enforcer games are not monotonous. As presented by Hefetz et al. [HKSS10], the outcome can depend on
the parity of the bias. For example, take H =

(
{u1, u2, u3}, {{u3}}

)
, i.e. the hypergraph with three vertices

and a losing set of size one. Avoider, going first loses the unbiased game and the biased (3, 1) game but wins
the biased (2, 1) game. This phenomenon is mainly due to the fact that in Avoider-Enforcer games, players
do not want to play in general, but since some vertices can be used to pass their turn, a player may want
to claim some of them in order to prevent his opponent from skipping his turn. To deal with this problem,
Hefetz et al. introduced monotone (p, q) Avoider-Enforcer games, and called the classical biased game as
strict biased game.

Definition 1.34 (monotone (p, q) Avoider-Enforcer). Let H = (X ,F) be a hypergraph, and let p, q ≥ 1 be
integers. A monotone (p, q) Avoider-Enforcer game on H is as the Avoider-Enforcer game on H, but Avoider
claims at least p vertices per move and Enforcer at least q vertices per move.

Note that this relaxation would not be necessary in Maker-Breaker games, since if Maker (resp. Breaker)
is allowed to claim up to p (resp. q) vertices per move, with a similar proof of Lemma 1.15, there will exist
an optimal strategy in which they claim p (resp. q) vertices.

This definition of biased Avoider-Enforcer games is monotonous. The threshold bias is defined similarly
to Maker-Breaker games as the smallest integer b such that Avoider wins the biased (1, b) Avoider-Enforcer
game. In [HKSS10], they determined the threshold bias for several games, such as the H-game and the
connectivity game.

23

In contrast to Maker-Breaker games, where there are no differences between the monotone and the
strict rulesets, in Avoider-Enforcer games, both rulesets have their interests. The monotone ruleset allows
introducing the threshold bias and provide results similar to its Maker-Breaker analog, while the strict
ruleset is more natural and can be seen as a tool to handle some Maker-Breaker games where achieving some
structure for Maker is equivalent to avoiding another structure. For instance, Hefetz [HKSS08] determined
the threshold bias in the planarity game, in which Maker aims to claim the edges of a non-planar graph by
providing a strategy avoiding short cycles and using some graph theory results about graphs of large girth.

1.2.6 I cut, you’ll choose: Client-Waiter and Waiter-Client games

The last type of convention studied in this thesis are Waiter-Client and Client-Waiter games. These games
were introduced by Beck [Bec02] in 2002 under the names Picker-Chooser and Chooser-Picker respectively
to represent the “I cut you’ll choose” principle, and generalize it. For instance, consider the clique-game,
i.e., the H-game with H = Kq for some integer q. In a I cut you’ll choose game, Waiter cuts the edges of
Kn into two parts, and Client has to choose one of the two parts. Therefore, this game has a direct link
with the Ramsey number: Client wins if and only if n ≥ r(q) where r(q) is the Ramsey number of q, i.e., the
minimum order of Kn such that any 2-coloring of the edges of Kn contains a monochromatic copy of Kq.
Waiter-Client and Client-Waiter games are then a generalization of this principle by proposing the edges two
by two, and letting Client claim exactly one of them, and letting the other one to Waiter.

The current names of the conventions, Waiter-Client and Client-Waiter were introduced by Hefetz, Kriv-
elevich and Tan [HKT16], in 2016, as these new names are less ambiguous with respect to the names of the
players. These two conventions are very similar, as they are played with the same rules. Only the winning
conditions are different. In both cases, Waiter selects two vertices and offers them to Client who chooses
one of them to claim, letting Waiter claim the second one. In the Waiter-Client convention, Waiter plays
the role of Maker and tries to fill up a hyperedge, while Client plays the role of Breaker and tries to prevent
him from succeeding. In the Client-Waiter convention, it is the opposite, i.e., Client plays the role of Maker
and Waiter the role of Breaker.

This convention, was presented as a first step to understand Maker-Breaker games. In fact, Beck intro-
duced it as an unbalanced version of the game where Waiter has more control on the game than Client. Indeed
similarities between both conventions exists, such that theorems similar to Theorem 1.25 and Theorem 1.26
were provided in Waiter-Client and Client-Waiter games.

Theorem 1.35 (Beck [Bec02]). Let H = (X ,F) be a hypergraph. If
∑
f∈F

2−|f | < 1, then Client wins the

Waiter-Client game on H.

Theorem 1.36 (Beck [Bec02]). Let H = (X ,F) be a hypergraph, If∑
f∈F

2−|f | >
∆2(H)|X |

8

then Client wins the Client-Waiter game on H.

The similarities between Client-Waiter games and Maker-Breaker games motivate the study of classical
Maker-Breaker games in the Client-Waiter convention, when some open problems were unsolved in the first
convention. For instance, even if the 7-in-a-row Maker-Breaker game is only conjectured to be a Breaker
win in the Maker-Breaker convention, but Csernenszeky [Cse10] proved in 2010 that Waiter wins in the
Client-Waiter convention on any subgrid of the infinite grid.

1.2.7 Connection between positional games and other areas of computer science

Positional games have strong connections to several areas of computer science. The most natural one is
probably Ramsey Theory, since players, by claiming the vertices of a hypergraph, create a partition of the
vertices between the two players. For example, it is known, by a Ramsey argument, that for any graph H,

24

there exists an integer N such that every 2-coloring of the edges of KN contains a copy of H. This result
has been generalized with a hypergraph coloring result by Erdős and Selfridge [ES73], which we need to
introduce before stating the result.

Definition 1.37 (Hypergraph coloring). Let H = (X ,F) be a hypergraph. A k-coloring of H is a function
c : X → [1, k]. It is said to be proper if for any hyperedge f ∈ F , there exists u, v ∈ f such that c(u) ̸= c(v).

The minimum number k such that there exists a proper k-coloring of H, if it exists is called the chromatic
number of H and is denoted χ(H).

Theorem 1.38 (Erdős and Selfridge [ES73]). Let H be a hypergraph. If χ(H) ≥ 3, then Alice wins the
Maker-Maker game on H.

Sketch of the proof. The proof relies on the fact that in Maker-Maker games, by Lemma 1.14, Bob
cannot win, thus the outcome is either D or A. If it is D, at the end of the game, no player would have
claimed all the vertices of a hyperedge. Therefore, the set of vertices claimed by Alice and by Bob would
provide a 2-coloring of H, which cannot exist. □

Corollary 1.39. Let H be a hypergraph. If, in Maker-Maker convention, we have o(H) = D, then χ(H) ≤ 2.

A direct consequences of Theorem 1.38, together with Theorem 1.25 is the following:

Theorem 1.40. Let H be a k-uniform hypergraph. If |F| ≤ 2k−1, then χ(H) ≤ 2.

However, note that Theorem 1.38 does not provide a winning strategy, but only the outcome.

Another important problem connects positional game theory to hypergraph theory: the neighborhood
conjecture. Let us first introduce the neighborhood of a hyperedge.

Definition 1.41 (Neighborhood of a hyperedge). Let H = (X ,F) be a hypergraph and let f ∈ F be a
hyperedge. The neighborhood of f , denoted by N [f] is the set of hyperedges that intersect f including f
itself, i.e. N [f] = {f ′ ∈ F , f ∩ f ′ ̸= ∅}. The maximum neighborhood size of H is then the largest size of a
neighborhood of a hyperedge in H.

Conjecture 1.42 (Beck [Bec02]). Let H = (X ,F) be a k-uniform hypergraph. If the maximum neighborhood
size of H is smaller than 2k−1, Breaker wins the Maker-Breaker game on H.

Note that this conjecture would be strictly stronger than Erdős-Selfridge criterion on regular hypergraphs,
as it only requires local properties and not global ones. Indeed, sometimes, the Erdős-Selfridge criterion
cannot be applied because of the number of hyperedges, even if they are not connected to each other. This
phenomenon is prevented with this conjecture?

Other connections between positional games and complexity theory or logic theory exists, but this con-
nection will be presented more in details among this manuscript as a part of the work during my thesis was
focused on this connection. Most of these results will be presented in Chapter 2 and Chapter 4.

1.3 Algorithmic and complexity studies

Although positional games on complete graphs have been the focus of most studies since their introduction,
algorithmic studies on general hypergraphs began soon after. To handle algorithmic studies of positional
games on graphs, the graph considered will no longer be complete, and any graph will be considered as input
of the problems. Recently, there has been a greater emphasis on these types of results. As it will be shown
in this section, positional games are a good tool to handle some complexity classes, and determining how
hard it is to know which player has a winning strategy is very important.

However, to handle correctly the complexity of positional games, we will remind the reader several
definitions and results in complexity theory, then we will focus on the complexity of positional games.

25

1.3.1 Complexity

In this section, Σ will be a finite set called alphabet. A word on Σ is a finite tuple of elements of Σ. A
language on Σ is a (possibly infinite) set of words.

The main study of complexity theory goes through decision problems, and classifying them into different
complexity classes is an important goal of our study.

Definition 1.43 (Decision problem). A decision problem is a question, that takes as input a language L
over an alphabet Σ∗ and a word x ∈ Σ∗, and asks whether x ∈ L or not.

Definition 1.44 (Complexity class). A complexity class is a set of languages L, such that for any x ∈ Σ∗,
the decision problem taking as input (L, x) can be solved by a Turing Machine allowing a certain quantity of
time or memory.

Usually, we can identify any closed question with decision problems of determining whether a word
belongs to a language. For instance, the question “Does a graph G contain a perfect matching” can be
identified with the decision problem taking as input G as a word and the set of graphs admitting a perfect
matching as language.

Without going into the details of Turing machines, one can simply consider that basic operations, such as
comparisons, additions, or conditional branches can be computed in constant time on it. A Turing machine
can then be deterministic, if only basic operations are allowed, or nondeterministic, if one more operation
is allowed: creating a copy of itself. In this case, it is sufficient that one of the copies outputs ”⊤” to the
problem to state that the word is in the language. When attempting to classify problems into different
complexity classes, the concepts of reduction and hardness naturally arise.

Definition 1.45 (Reduction). A reduction is a computable function f that takes as input a word x of a
language L and outputs a word x′ of a language L′ such that, x ∈ L if and only if x′ ∈ L′. If the Turing
machine that computes f ends in polynomial time, then we say that the reduction is polynomial.

Definition 1.46 (Hardness). Let C be a complexity class. A language L is said to be C-hard if any language
in the class C can be reduced to L in polynomial time. Furthermore, we say that L is C-complete if L ∈ C.

The classes P and NP

The dichotomy between the classes P and NP is probably one of the most famous problems in computer
science, and answering the question “Is P equal to NP ?” is a millennium problem. The class P is the class of
languages that can be recognized in polynomial time by a deterministic Turing machine, while the class NP
is the class of languages that can be recognized in polynomial time by a nondeterministic Turing machine.
Thus, P ⊂ NP, and the question of the equality between the two classes is still open today, although most of
the community agrees to say that they are probably different. Despite the fact that the formal definition of
the classes requires the concept of Turing machines, the most practical definition, especially in algorithmic
studies, is the one with certificates:

Definition 1.47 (NP). A language L belongs to the class NP if there exists a polynomial P and a function
f : Σ∗ ×Σ∗ → {⊤,⊥}, such that for any input x ∈ Σ∗ we have, x ∈ L if and only if there exists c ∈ Σ∗ with
|c| < P (|x|), f(x, c) = ⊤ and the number of operation to compute f(x, c) is lower than P (|x|). c, if it exists,
is then called a certificate for x.

The class NP is the natural class for studying problems that are easily verifiable, for example, the
existence or non-existence of some structure in graphs. However, proving that some structure does no exist
in a graph is, in general, not easily certifiable. By considering certificates to prove that x /∈ L, the class
under consideration becomes coNP.

26

Definition 1.48 (coNP). A language L belongs to the class coNP if there exists a polynomial P and a
function f : Σ∗ × Σ∗ → {⊤,⊥} where Σ∗ a set of words such that for any input x ∈ Σ∗ we have, x /∈ L if
and only if there exists c ∈ Σ∗ with |c| < P (|x|), f(x, c) = ⊥ and the number of operation to compute f(x, c)
is lower than P (|x|). c, if it exists, is then called a certificate for x.

In the rest of the paper, we will identify a language and the decision problem of deciding whether a word
is in a language or not. For instance, Clique, the language of words of the form (G, k) such that G contains
a clique of size k, will be identified with the decision problem of determining, given a graph G and an integer
k, whether G contains a clique of size k or not. Note that if it is not precised, we suppose that Σ = {0, 1},
and that the pair (G, k) is encoded in binary.

The study of NP-complete languages started with SAT, the language of satisfiable boolean formulas, which
was proved NP-complete by Cook [Coo71] in 1971, and has become one of the most important research topic
in complexity theory. To introduce SAT formally, we will first recall some definitions in boolean logic.

Definition 1.49. Let X be a set called the variables.

• A valuation is a function ν : X → {⊤,⊥}. ⊤ refers to true and ⊥ refers to false.

• A formula is defined inductively by a variable x is a formula, and if F and F ′ are formulas, ¬F , F ∨F ′

and F ∧ F ′ are formulas.

• A valuation ν satisfies a formula F if:

– F is a variable x and ν(x) = ⊤.
– F = ¬F ′ and ν does not satisfy F ′.

– F = F1 ∨ F2 and ν satisfies F1 or ν satisfies F2.

– F = F1 ∧ F2 and ν satisfies F1 and ν satisfies F2.

• A literal is a formula of the form x or ¬x.

• A clause is a formula that contains only ∨ and literals.

• A Conjunctive Normal Form formula (or CNF) is a formula that can be written only using ∧ and
clauses. It is said to be a k-CNF formula if all its clauses contain at most k literals.

Problem 1.50 (3-SAT).
Input: a 3-CNF Formula φ of the form φ =

∧
1≤i≤m

Ci where each Ci is a clause that contains at most

three literals.
Output: ⊤ if and only if φ is satisfiable

Recall that it is equivalent to consider the decision problem asking whether the word φ belongs to the
language of satisfiable formulas.

Theorem 1.51 (Cook [Coo71]). 3-SATis NP-complete.

The NP-completeness of SAT has been the starting point of several reductions. Karp [Kar72] in 1972
proved, by reduction from SAT, that several classical problems are NP-complete.

The class PSPACE

In game theory, however, this is usually not easy to find a certificate that a player has a winning strategy.
Indeed, ifH = (X ,F) is a hypergraph, a strategy for a player corresponds to a function S : 2X×2X → X , and
therefore, it cannot necessarily be expressed with a polynomial certificate. Therefore, in general, the strategy
cannot be written in polynomial size, and one must consider a larger class to handle all the possibilities.
To handle the fact that the certificates are not polynomial, we usually need to consider the class PSPACE
instead of NP, which bounds the space required to compute the function instead of the time.

27

P NPcoNP

PSPACE

⊆⊇ ⊆⊇

Figure 1.6: Inclusion between the different complexity classes

Definition 1.52 (PSPACE). A language L belongs to the class PSPACE, if there exists a polynomial P and
a computable function f : Σ∗ → {⊤,⊥} such that f(x) = ⊤ if and only if x ∈ L, and that f uses at most
P (|x|) memory space.

Lemma 1.53 (Folklore). The class NP is a subclass of the class PSPACE.

In PSPACE, the first central problem from which most reductions are made is QBF. It corresponds to
Quantified Boolean Formulas. Instead of just considering a conjunctive normal form formula, quantifiers are
allowed here. Without loss of generality, and up to add useless variables, QBF can be written as follows:

Problem 1.54 (QBF).
Input: A quantified formula of the form ψ = ∃x1∀x2 . . . ∃x2n−1∀x2n φ(x1, . . . , x2n) where φ is a 3-CNF

formula.
Output: ⊤ if the valuation provided by x1, . . . , x2n satisfies ψ(x1, . . . , x2n).

Theorem 1.55 (Stockmeyer and Meyer [SM73]). QBF is PSPACE-complete.

PSPACE is the natural complexity class to express strategies. Even if the function S cannot necessarily be
expressed in polynomial space, it is possible, given two sets X1 and X2 to compute all the possible sequences
of moves supposing that X1 and X2 are already claimed. Then, only returning as S(X1,X2) an optimal move
is enough to compute the winner, even if the full description of S is not provided. Indeed, a strategy consists
in choosing a move for each of the move of the opponent, which creates an alternation between ∀ and ∃ as
it is in QBF. This alternation between ∃ and ∀ allows us to define QBF as a game played by two players,
Satisfier and Falsifier, who alternately choose a valuation of the variables. Satisfier chooses the value of x1,
then Falsifier chooses the value of x2, and so on until the last variable has its value chosen. At the end,
a valuation ν of the variables is obtained, and Satisfier wins if and only if ν satisfies φ. This equivalent
definition of the problem makes it easier to reduce QBF to games. A summary of the different complexity
classes and their inclusion is provided in Figure 1.6

Parameterized complexity

Once problems have been characterized as hard (either NP or PSPACE-hard in general), two main steps
are possible to still get positive results on these problems. Either simplify them, by restricting their inputs

28

to some classes, or look for the reason why these problems are hard. We handle here the second point
by considering parameterized complexity, i.e. we look at some parameters of the input, and observe what
happens when this parameter is bounded.

The study of parameterized complexity was first introduced by Gurevich et al. [GSV84], who expressed
the exponential part of the complexity of an algorithm as a function of some parameter k of the graph,
instead of its size. This new study introduced different classes of complexity to better understand how hard
problems are, and to find algorithms that can be efficient when some parameters are small, even if the
problem is NP-hard.

Definition 1.56 (Parameterized problem). A parameterized problem is a question, that takes as input a
language L such that L ⊂ Σ∗×N and a word (x, k) ∈ Σ∗×N, and asks whether (x, k) ∈ L or not. x is called
the instance, and k the parameter.

Definition 1.57 (FPT). A parameterized problem L is said to be FPT, if there exists a computable function
f and a polynomial p such that for any (x, k) ∈ Σ∗ × N, it can be decided in time O(f(k) ∗ p(|x|)) whether
(x, k) ∈ L.

Definition 1.58 (XP). A parameterized problem L is said to be XP, if there exists a computable function f
such that for any x, k ∈ Σ∗ × N, it can be decided in time O(|x|f(k)) whether (x, k) ∈ L.

Note that we have FPT ⊂ XP.
Both the classes FPT and XP have the property that if a parameterized problem is in FPT (resp. XP)

and if k is bounded, then there exists a polynomial function to decide whether (x, k) ∈ L or not. If this is
the case, we say that the problem has an FPT (resp. XP) algorithm.

Sometimes, FPT results are provided through kernels.

Definition 1.59 (Kernelization). Let L ⊂ Σ∗ ×N be a language. A kernelization is a function f that maps
an instance (x, k) ∈ Σ∗ × N to an instance (x′, k′) ∈ Σ∗ × N such that:

• f can be computed in polynomial time in |x|.

• (x, k) ∈ L if and only if (x′, k′) ∈ L

• |x′| is bounded by a computable function g of k.

If g is linear, quadratic, cubic, or polynomial, we say that L admits a linear, quadratic, cubic or polynomial
kernel.

The most natural way to find kernels is through reduction rules. A reduction rule is a function that takes
an instance (x, k) as input and returns an instance (x′, k′) with |x′| < |x|. Usually, kernels are obtained by
successively applying of reduction rules, until the size of |x′| is bounded by a function of k. Admitting a
small kernel is a very important property in parameterized complexity.

Theorem 1.60 (Folklore). Let L be a parameterized problem. L is FPT if and only if L admits a kernel.

However, not every parameterized problem has a kernel. In fact, the W -hierarchy characterizes different
classes of complexity, considering the weft of the boolean circuit that recognizes the language. We refer the
reader to Downey and Fellows [DF95, DF99] who introduced these classes of complexity. It is sufficient to
know that unless if some complexity assumptions are added, we have FPT = W [0] ⊊ W [1] ⊊ W [2] ⊊ · · · ⊊
AW[∗]. In particular, if a problem is W [1]-hard, it cannot be solved by an FPT algorithm.

When dealing with problem on graphs, a large panel of graph values have already been considered as
parameters to deal with parameterized problem on graphs. An overview of graph problems parameterized
by several graph parameters is provided in Jansen’s dissertation [Jan13], and we will use some of these
parameters in Chapter 4.

29

1.3.2 Complexity of positional games

Now that several complexity classes are defined, one can wonder in which complexity class are positional
games. Hopefully, an argument of Schaefer [Sch78] answers this question.

Theorem 1.61 (Schaefer [Sch78]). All the conventions of positional games are in PSPACE.

Sketch of the proof. Let H = (X ,F) be a hypergraph. Schaefer proved that if a game ends in
a polynomial number of moves consisting in a polynomial number of options each, then the game is in
PSPACE. In positional game, any move consists in claiming an unclaimed vertex. Therefore, the game end
in at most |X |. Moreover, a move consists in choosing one (two in Waiter-Client or Client-Waiter games)
unclaimed vertex. Therefore, there is a polynomial number of options each time. To obtain an algorithm in
running in polynomial space, it is enough to compute each possible games, and keeping in memory the better
outcome for each. Thus, at most one game at a time is kept in memory and this method uses polynomial
space. □

All the results presented here will be summarized in Table 1.1

Complexity of achievement games

Soon after the introduction of Maker-Breaker games, in 1978, Schaefer [Sch78] proved that many logic games
are PSPACE-complete. Among them, he introduced POS CNF, which is defined as follows:

Definition 1.62 (POS CNF). Let φ be a CNF formula where no literal is negative. The POS CNF game
is played by two players, namely Satisfier and Falsifier. Alternately, Satisfier (resp. Falsifier) chooses a
variable whose truth value has not yet been set and sets it to ⊤ (resp. ⊥). When all the variables have been
set to a truth value, Satisfier wins if and only if the valuation ν corresponding to these moves satisfies φ.

This game, even though it is not presented as a positional game, corresponds exactly to Maker-Breaker
games. Indeed, let φ be a positive CNF formula over the variables {x1, . . . , xn}. Consider the hypergraph
H = (X ,F) where X = {x1, . . . , xn}, and every clause Cj ∈ φ is a hyperedge containing the variables
appearing in Cj . Consider that when Satisfier sets a variable to ⊤, Breaker claims the corresponding vertex,
and when Falsifier sets a variable to ⊥, Maker claims the corresponding vertex. If φ is satisfied, at least one
variable in each clause is set to ⊤, corresponding to a vertex claimed by Breaker. Thus, all the hyperedges
contains a vertex claimed by Breaker and Breaker wins. If it is not satisfied, there exists a clause Cj in
which all the variables were set to ⊥, corresponding to a hyperedge fully claimed by Maker, and Maker wins.
Finally, Breaker wins if and only if Satisfier wins.

The reduction of Schaefer, from QBF to POS CNF contains only clauses of size at most 11. Therefore, he
provided the following theorem:

Theorem 1.63 (Schaefer [Sch78]). Deciding the outcome of a Maker-Breaker game is PSPACE-complete,
even restricted to hypergraphs of rank 11.

The proof of Theorem 1.63 was complicated, Byskov [Bys04] gave a simpler proof of the same result in
2004, but with no hypothesis on the size of the hyperedges. In the same paper, he provided a reduction
from Maker-Breaker games to Maker-Maker games increasing their rank by only one, proving therefore
that Maker-Maker games are PSPACE-complete, even restricted to hypergraphs of rank 12. The result of
Schaefer was improved in 2021, when Rahman and Watson [RW21] proved that Maker-Breaker games are also
PSPACE-complete restricted to hypergraphs of rank 6. Moreover, they proved that the hypergraph obtained
in their reduction can be transformed into a 6-uniform hypergraph and the reduction remains polynomial.

Theorem 1.64 (Rahman and Watson [RW21]). Deciding the outcome of a Maker-Breaker game is PSPACE-
complete, even restricted to 6-uniform hypergraphs.

Using again the argument provided by Byskov, this results improved the known bound on the complexity
of Maker-Maker games.

30

Corollary 1.65 (Rahman and Watson [RW21], Byskov [Bys04]). Deciding the outcome of a Maker-Maker
game is PSPACE-complete, even restricted to 7-uniform hypergraphs.

On the other hand, if the rank of the hypergraph is small enough, the outcome is not so difficult to
compute. Considering that Maker starts, as it is often the case in Maker-Breaker games, if the hypergraph
has a hyperedge of size 1, Maker wins with her first move, and if the hypergraph is 2-uniform, Breaker wins
if and only if all the hyperedges are disjoint. The case of rank 3 hypergraphs is much more complicated.
In 2004, Kutz [KF05] gave a polynomial-time algorithm, for rank 3 linear hypergraphs, i.e., hypergraphs on
which two hyperedges share at most one vertex. This result was improved, by Galliot et al. [Gal23] in 2023,
who proved that the outcome can be computed in polynomial time on any hypergraph of rank 3.

Theorem 1.66 (Galliot et al. [Gal23]). Deciding the outcome of a Maker-Breaker game played on a hyper-
graph of rank 3 is polynomial.

The proof of Theorem 1.66 is a long case analysis, showing that, if Breaker is able to prevent some
structure to appear in the hypergraph during his six first moves, he can prevent them to appear during all
the game. Consequently, if H has outcomeM, after at most six moves, Maker has either win or created a
structure in the hypergraph that ensures her to win.

Theorem 1.66, together with Theorem 1.64 let only the complexity of hypergraphs of rank 4 and 5 open.
As most of the gadgets used by Rahman and Watson are hyperedges of order four or five, it seems likely
that Maker-Breaker games restricted to hypergraphs of rank 4 are also PSPACE-complete.

Conjecture 1.67. Deciding the outcome of Maker-Breaker games is PSPACE-complete, even restricted to
hypergraphs of rank 4.

Even if there was no result between 1978 and 2021 on general Maker-Breaker games, during this time,
several particular Maker-Breaker games were proved to be PSPACE-complete. For instance Reisch [Rei81]
proved in 1981 that, Generalized HEX, in which Maker aims to connect two vertices of a graph, and Breaker
tries to prevent him is PSPACE-complete on planar graphs, and Duchêne et al. [DGPR20] proved that
the domination game is PSPACE-complete on split and bipartite graphs. On the positive side, only few
complexity results are known. For instance, Lehman [Leh64] proved that the winner of the Maker-Breaker
connectivity game can be determined in polynomial time, and Duchêne et al. [DGPR20] proved that the
Maker-Breaker domination game can be solved in polynomial time in forests and cographs. In Chapter 3, we
prove that the winner of the Maker-Breaker H-game can be computed in polynomial time in forests when
H is a star, and the winner of the Maker-Breaker perfect matching game can be computed in polynomial
time in grids.

Concerning Maker-Maker games, only few complexity results are known. Even for 3-uniform Maker-
Maker games, it is still unknown if computing the winner can be done in polynomial time or not. In
Chapter 5, we focus on the Maker-Maker domination game and provide a polynomial time algorithm to
compute the winner of this game in forests.

Complexity of avoidance games

Although avoidance games and achievement games have appeared at about the same time, the PSPACE-
hardness of deciding the winner of Maker-Breaker games came much earlier than the same problem related
to avoidance games. The first complexity result obtained on general Avoider-Avoider games was that it is
PSPACE-complete to determine the winner of a given position, with some played vertices, by Slany [Sla02]
in 2002. Next, Burke and Hearn [BH19] in 2019 have improved this results, proving that computing the
winner of an Avoider-Avoider game was PSPACE-complete by providing a proof for 2-uniform hypergraphs
in the game COL, which consists in claiming the vertices of a graph, and whenever a player claims the
two extremity of an edge, he or she loses. Finally, no other result appeared, until 2022 when Miltzow and
Stojakovic [MS22] have proved that computing the winner of Avoider-Enforcer games is NP-hard. With
Valentin Gledel [GO23], we close this open question by proving that computing the winner of an Avoider-
Enforcer game is PSPACE-complete, even restricted to 6-uniform hypergraphs, see Chapter 2, Theorem 2.1.

31

On the positive side, only rank 2 hypergraphs are known to be solvable in polynomial time. A proof of
this result will be provided in an ongoing work of Galliot et al..

Theorem 1.68 (Galliot et al. [GGGP]). Let H = (X ,F) be a rank 2 hypergraph. The winner of an Avoider-
Enforcer game played on H can be computed in polynomial time.

The main idea of the proof, is to focus on the structures that can make Avoider loses in her last moves
and removing vertices that will be used only to pass turns for the players.

Complexity of Client-Waiter games

Even though Client-Waiter and Waiter-Client games were introduced in 2002, their complexity was quickly
studied, and the first hardness results appeared in 2011, when Csernenszky et al. [CMP11] proved the
NP-hardness of both conventions. Note, however, that the construction used for Waiter-Client provides a
hypergraph with an exponential number of hyperedges, so the construction is polynomial only if we allow
an implicit description for the hyperedges.

The complexity of hypergraphs of small rank has not yet been studied considering these conventions, how-
ever, we present here some results obtained with Valentin Gledel, Sebastien Tavenas and Stéphan Thomassé,
proving that hypergraphs of rank 2 can be solved in polynomial time.

Theorem 1.69 (Gledel, O., Tavenas, Thomassé [GOTT]). Let H = (X ,F) be a rank 2 hypergraph. The
winner of a Client-Waiter game played on H can be computed in polynomial time.

Proof. We prove that Client wins on H if and only if there exists a hyperedge of order 1, or if two winning
sets intersect.

• If H has a winning set of order 1, {x}, when Waiter proposes the vertex x, Client can claim it and
win. As the last vertex goes to Client if the number of vertices if odd, if x is never proposed, Client
still wins.

• If there exists two winning sets {a, b} and {a, c} which intersect, Client applies the following strategy:

– Whenever Waiter proposes two of these vertices, Client claims one of them, and he takes a if it is
proposed.

– If Waiter proposes one of these vertices with any other, Client claims the one in {a, b, c}.
– Otherwise, Client takes any vertex.

Following this strategy, Client will claim at least two vertices from {a, b, c}, and will have claimed a.
Therefore, he will win. Once again, even if the number of vertices is odd, this strategy can be applied.

Reciprocally, if all the hyperedges have size 2 and do not intersect, by always proposing a pair (a, b) such
that (a, b) is a hyperedge, Waiter will get one vertex in each of the winning sets and will win.

Theorem 1.70 (Gledel, O., Tavenas, Thomassé [GOTT]). Let H = (X ,F) be a rank 2 hypergraph. The
winner of a Waiter-Client game played on H can be computed in polynomial time.

Proof. Let H = (X ,F) be a rank 2 hypergraph. Up to removing some hyperedges, we can assume that there
are no two hyperedges e and e′ such that e ⊂ e′. If this were the case, the hyperedge e′ could be removed.

We prove that if Waiter has a winning strategy in the Waiter-Client game played on H, she has a winning
strategy in three moves, which gives a polynomial algorithm by exhaustive search on the first three moves.
First, note that if (x, y) is a hyperedge such that at least one of its vertex, say x, is in no other hyperedge,
proposing (x, y) can be ignored from any optimal strategy for Waiter, as Client will claim y and the resulting
hypergraph is a subhypergraph of H. Thus, by Lemma 1.19, it cannot benefit Waiter.

This result is obtained by case analysis on the number of hyperedges of size 1 and the structure of the
hyperedges of size 2:

32

1. If H has two hyperedges of order 1, Waiter wins in a single move by proposing the two vertices in those
two hyperedges.

2. If H has exactly one hyperedge of order 1, and at least two other hyperedges, Waiter wins in two
moves: Let x be the vertex alone in its hyperedge, and let e1 = (u1, v1), and e2 = (u2, v2) be two
hyperedges that do not intersect {x}.

• If e1 ∩ e2 = ∅, Waiter first propose {u1, u2}. By symmetry, assume that Client chooses u2. Now
Waiter proposes {v1, x} and wins.

• If e1 ∩ e2 ̸= ∅, say for instance u1 = u2, then Waiter proposes the two pairs {u1, x} and {v1, v2}
and wins.

3. If H has exactly one hyperedge of order 1 and at most one hyperedge of order 2, then Client wins. If
(x) is a hyperedge and (y, z) is another (if it exists), Client can always claim x and one of y or z and
win.

4. If H has no hyperedge of order 1 and at most three hyperedges of order 2, Client wins. After the first
move of Waiter, Client claims a vertex of maximum degree.

5. Otherwise, all the hyperedges have size 2. Let {x, y} be the first move of Waiter. Suppose, without loss
of generality, that both x and y are in at least one hyperedge different from (x, y). If such a move does
not exist, H contains only one hyperedge (x, y), and Client wins by claiming any vertex of it. Suppose,
without loss of generality, that Client chooses x. Since, y was in at least one hyperedge different from
(x, y), say (y, z), there is now a hyperedge with only one vertex left z. Thus, we are back at one of
the previous points. Therefore, if at least one pair of vertices leads Waiter to the case (1) or to the
case (2), Waiter wins in at most three moves, otherwise, Client wins.

Finally, we proved that computing the winner of a Client-Waiter game is PSPACE-complete, even re-
stricted to hypergraphs of rank 6, see Chapter 2, Theorem 2.10.

With these results, the complexity of positional games let two directions for further studies: determining
the complexity of Waiter-Client games, which are only known to be in PSPACE, or closing the different
gaps for the other conventions, as except for Avoider-Avoider games, no complexity results are known for
hypergraphs of rank 4 and hypergraphs of rank 5.

Rank 2 3 4, 5 6 7+

Maker-Breaker P
[Folklore]

P
[Gal23]

Open PSPACE-c
[RW21]

PSPACE-c
[RW21]

Maker-Maker P
[Folklore]

Open Open Open PSPACE-c
[RW21, Bys04]

Avoider-Avoider PSPACE-c
[BH19]

PSPACE-c
[BH19]

PSPACE-c
[BH19]

PSPACE-c
[BH19]

PSPACE-c
[BH19]

Avoider-Enforcer P
[GGGP]

Open Open PSPACE-c
Thm 2.1

PSPACE-c
Thm 2.1

Client-Waiter P
Thm 1.69

Open Open PSPACE-c
Thm 2.10

PSPACE-c
Thm 2.10

Waiter-Client P
Thm 1.70

Open Open Open Open

Table 1.1: The complexity of the different conventions

As the hardness of Client-Waiter and Avoider-Enforcer games are very recent, only few results are already
provided concerning the PSPACE-hardness of particular games under these conventions. In Chapter 2, we
will prove that both Avoider-Enforcer and Waiter-Client domination games are PSPACE-complete, using the
hardness of Avoider-Enforcer and Client-Waiter games respectively.

33

Parameterized complexity

As presented previously, most of the conventions of positional games are PSPACE-hard, even if the hy-
pergraphs considered are of small rank. Therefore, it seems natural to tackle them under the paradigm
of parameterized complexity. A natural parameter for games is the number of moves. Downey and Fel-
lows [DF99] introduced the number of moves as a parameter to handle games. In positional games, we say
that a player has a winning strategy in k moves if he has satisfied his winning conditions after his k first
moves. Namely, we have the following conditions:

• In Maker-Breaker games, Maker wins in k moves if she can fill up a hyperedge during her k first moves.

• In Maker-Breaker games, Breaker wins in k moves if he can fill up a transversal of the hypergraph
during his k first moves.

• In Avoider-Enforcer games, Enforcer wins in k if he can force Avoider to fill up a hyperedge during
her k first moves.

• In Avoider-Enforcer games, Avoider wins in k moves if she can force Enforcer to claim a transversal
during his k first moves.

Downey and Fellows [DF99] conjectured that HEX, which we remind the reader can be modeled as
a Maker-Breaker game, is AW[*]-hard. This problem has remained open for several years until Bonnet
et al. [BGL+17] proved that it is only W[1]-complete parameterized by the number of moves required for
Maker to win, which proves, unless some complexity assumptions are made, that it is not AW[*]-hard. In
this paper, they proved several meta-theorems about the parameterized complexity of positional games.

Theorem 1.71 (Bonnet et al. [BGL+17]). Determining whether Maker can fill up a hyperedge in k moves
in a Maker-Breaker game is W[1]-complete, parameterized by k.

Theorem 1.72 (Bonnet et al. [BGL+17]). Determining whether Enforcer can force Avoider to fill up a
hyperedge in k moves in an Avoider-Enforcer game is co-W[1]-complete, parameterized by k.

Theorem 1.73 (Bonnet et al. [BGL+17]). Determining whether Alice can fill up a hyperedge before Bob
and during her k moves in a Maker-Maker game is AW[*]-complete, parameterized by k.

This complexity gap between the Maker-Breaker and the Maker-Maker conventions can be explained by
the fact that, in Maker-Maker games, the players have two goals, to fill up a hyperedge and to prevent their
opponent from filling up one. This supports the idea that Maker-Maker games are harder to solve than
Maker-Breaker games.

Despite these hardness results, Bonnet et al. [BJS16], together with an argument by Frick and Grohe [FG01],
also provided an FPT algorithm to solve Hex parameterized by the number of moves. Indeed, Hex being
played on a planar graph, it has locally bounded treewidth, and as the winning conditions can be expressed
in first order formula, a result of Frick and Grohe [FG01] states that it can be verified in FPTtime param-
eterized by the number of variables, which corresponds here to the number of moves. More generally, they
proved that any game on a graph G whose winning conditions can be expressed in first order logic is FPT
parameterized by the treewidth and the number of moves Maker needs to win.

Even if the number of moves seems natural and inherent to games, as we are mostly studying games on
graphs, several graph parameters could be used, as they are directly related to the game we will consider.
For instance, as most games are easily solvable on trees, some distance to tree can be used.

In Chapter 4, we provide FPT algorithms for the Maker-Breaker Domination game for several graph
parameters, and we prove that this game is W[2]-hard parameterized by the number of moves required by
Dominator to win.

1.4 Tools in positional games

In this section, we will introduce several tools that are often used in positional games, either to provide
reductions between games or to compute strategies.

34

1.4.1 Equivalences between hypergraphs

One problem with considering positional games, is that some results can only be applied when the board of
the game is empty, i.e. before any move has been made. As soon as positions with already claimed vertices
are considered, some results cannot be applied so easily. Hopefully, in weak games, it is possible to reduce
the hypergraph after these moves to consider only hypergraphs where no vertex has been claimed.

Lemma 1.74 (Folklore). Let H = (X ,F) be a hypergraph. Let X1, X2 be set of vertices such that X1∩X2 = ∅.
Let X ′ = X \ (X1 ∪ X2) and F ′ = {e \ X1|e ∈ F and e ∩ X2 = ∅}. Let H′ = (X ′,F ′). In Maker-Breaker,
Avoider-Enforcer, Client-Waiter and Waiter-Client games, the position P = (H,X1,X2) and P ′ = (H′, ∅, ∅)
have the same outcome.

The main idea using this lemma is that, as we only consider the hyperedges filled up by Maker for
instance, whenever Breaker claims a vertex x, we can remove all the hyperedges that contains x, as we know
that Maker cannot fill up one of them. Reciprocally, when Maker plays a vertex x, it can be removed from
all the hyperedges that contains it as, to fill up this hyperedge, she no longer needs to play x, see Figure 1.7.
Note that if there is an empty hyperedge, Maker has automatically won, as by definition, she has claimed
all the vertices of this hyperedge.

M

M

B

(a) A general position on a hypergraph.
(b) The resulting hypergraph after application
of Lemma 1.74.

Figure 1.7: Application of Lemma 1.74. Vertices claimed by Maker are removed. The vertex claimed by
Breaker is removed with the hyperedge that contains it.

The proof of this lemma is straightforward and comes from the following observation:

Observation 1.75. Let H = (X ,F) and H′ = (X ′,F ′) be two hypergraphs. Let P = (H,X1,X2) and
P ′ = (H′,X ′

1,X ′
2) be positions. Suppose that there is a bijection f : X \ (X1 ∪X2)→ X ′ \ (X ′

1 ∪X ′
2) such that

for any set S ⊂ X \ (X1 ∪ X2) of unclaimed vertices, S contains a winning set for a player in H if and only
if f(S) contains a winning set for the same player in H′. Then, P and P ′ have the same outcome.

This reduction, together with Lemma 1.19 makes it possible to remove several vertices from the game
and work on smaller hypergraphs. When this happens, it is often the case that the considered hypergraph
is no longer connected. Thus, we consider tools to solve positional games that can be represented as union
of games.

1.4.2 Union of hypergraphs

While playing on a hypergraph with multiple connected components, the game behaves as a union of games,
in the combinatorial game sense of the union: the moves on a component will not cause any change in
the other ones. Therefore, even if in most of the studies, the player who goes first is determined by the
rules, usually Maker or Avoider, to handle unions, we need to study games with the other player going first.
By playing first in a component, a player makes it possible for their opponent to play first in another one.
Generally, the outcome is not the same in both cases. We remind the reader here that, in achievement games,

35

y

x

Figure 1.8: In this hypergraph x dominates y as any hyperedge containing y also contains x.

i.e., Maker-Maker and Maker-Breaker, according to Lemma 1.15, the players always want to play, and the
outcome P does not exist. We also remind the reader that in Avoider-Enforcer games, by Lemma 1.16, what
really matters is the player going second to last and not the player who starts.

We can now focus on the outcome of a union of games, in function of the outcome of its components. In
Maker-Breaker games, this result is well known from the folklore, while in Avoider-Enforcer games, it is due
to Galliot et al. [GGGP]. Both tables are provided in Table 1.2. These tables directly provides the following
lemma:

Lemma 1.76 (Folklore). Let H = (X ,F) be a hypergraph such that H = H1 ∪ H2. Maker wins going first
in H if and only if she wins going first in H1 or in H2.

This lemma is very strong and makes it possible to handle unions very easily in Maker-Breaker games.
However, no results are known in the Maker-Maker convention. A consequence of that is, for example, that
even if cographs can easily be solved in polynomial time in the Maker-Breaker Domination game, they are
really hard to handle in the Maker-Maker convention of that game.

∪ M N B
M M M M
N M M N
B M N B

(a) Outcome of the union of two Maker-Breaker
games.

∪ E SL A
E E E E
SL E E SL
A E SL A

(b) Outcome of the union of two Avoider-
Enforcer games.

Table 1.2: Outcome of an union of two weak games

1.4.3 Dominated moves

Another phenomenon that can occur when computing a winning strategy, is that some moves are better than
others. Therefore, we present here the notion of dominated moves, to show that under certain circumstances,
we can assume without loss of generality that some moves are not played.

Definition 1.77 (Dominated move). Let H = (X ,F) be a hypergraph. Let x, y ∈ X be unclaimed vertices
in H. We say that y dominates x in H, or x is dominated by y in H, if whenever a player has a winning
strategy starting by claiming x, he has one starting by claiming y, see Figure 1.8.

Considering this definition of dominated moves, we can always assume that, a player will never play a
dominated move. In particular, we have the following result which belongs to the folklore of Maker-Breaker
and Maker-Maker games, and which was proved by Miltzow and Stojaković [MS22] in Avoider-Enforcer
games. Although it is not stated, the proof they gave also works in the Avoider-Avoider convention.

36

Lemma 1.78 (Folklore, Miltzow and Stojaković [MS22]). Let H be a hypergraph. Let x, y ∈ X such that
{e ∈ F|x ∈ e} ⊆ {e ∈ F|y ∈ e}. Then y dominates x in Maker-Breaker and Maker-Maker games, and x
dominates y in Avoider-Enforcer and Avoider-Avoider games.

Client-Waiter games also have a similar type of dominated moves. However, because of the different
structure of Client-Waiter games, the most important part of dominated moves focuses on Waiter’s choices.
Indeed, when Client has to choose, its optimal moves, among the two possible vertices, are the same as the
one of Maker in the Maker-Breaker convention.

Lemma 1.79 (Folklore). Let H = (X ,F) be a hypergraph. Let e ∈ F such that e = (x, y). If Waiter has a
winning strategy in the Client-Waiter game on H, he has one starting by proposing the pair {x, y}.

The intuition behind this lemma is that Waiter cannot propose x and y separately, otherwise Client can
take both and win. Since she has to propose them together, it is better for her to propose them first to know
which vertex will be chosen by Client.

Proof. We prove this result by contraposition. Suppose that Client has a winning strategy S when Waiter
proposes {x, y} first. Suppose, without loss of generality that Client chooses x for his first move, and consider
the following strategy for Client:

• If Waiter proposes the pair {x, y}, Client chooses x.

• If Waiter proposes a pair that contains neither x nor y, Client chooses following S, supposing he has
already claimed x and Waiter y.

• If Waiter proposes a pair containing exactly one of x or y, Client chooses it.

Following this strategy, if Waiter at some point proposes the pair {x, y}, everything happens for Client
as if Waiter had proposed it first. Therefore, Client will manage to claim a winning set, since S is a winning
strategy for Client. Otherwise, Client will claim x and y, which makes him win, since it is a winning set.

So whenever Client has a winning strategy when (x, y) is proposed first, he has one when it is not.
Therefore, by contraposition, whenever Waiter has a winning strategy, she has one that proposes (x, y)
first.

1.4.4 Pairing strategies

A classic type of strategy in Maker-Breaker games is pairing strategies. A pairing strategy consists of pairing
vertices two by two and making sure to claim at least one vertex in each pair, usually by playing in the same
pair as the opponent whenever he plays in a pair. While this type of strategy is not necessarily a winning
strategy, it can characterize some instances of the game where a winner can be determined in polynomial
time.

Lemma 1.80 (Folklore). Let H = (X ,F) be a hypergraph in a Maker-Breaker game. Let (a1, b1), . . . , (an, bn)
be pairwise disjoint pairs of vertices. Maker (resp. Breaker) has a strategy that claims at least one vertex in
each pair (ai, bi). Such a strategy is called a pairing strategy.

Corollary 1.81 (Folklore). Let H = (X ,F) be a hypergraph. Let (a1, b1), . . . , (an, bn) be pairwise disjoint
pairs of vertices such that any hyperedge f ∈ F contains a pair (ai, bi). Then Breaker wins the Maker-Breaker
game on H.

This result can also be applied after some moves have been played. For instance, In Tic-Tac-Toe, Breaker
going first can consider the pairing presented in Figure 1.9 to claim at least one vertex in each hyperedge
and win.

Pairing strategies has been used several times to obtain results in Maker-Breaker games. As an applica-
tion, in the Maker-Breaker domination game, Duchêne et al. [DGPR20] introduced pairing dominating sets,
i.e. sets of pairs such that each vertex of the graph is dominated by the two vertices of some pair. They

37

1

1

2

4

2

4

3

3

Figure 1.9: A pairing strategy for Breaker going first in Tic-Tac-Toe. The cross in the middle is his first
move, vertices numbered with the same digit are paired together.

proved that the existence of a pairing dominating set ensures a win for Dominator, and that, in trees and
cographs, Dominator wins going second if and only if the graph admits a pairing dominating set. More
details about these results will be provided in Chapter 4.

Although pairing strategies are a classic type of strategy in achievement games, they have not been used in
avoidance games. Since in avoidance games, ensuring to play some vertex cannot provide a winning strategy,
pairing strategies have to be modified to be applied here. Therefore, we introduced pairing strategies in
Avoider-Enforcer games [GO23] which force the opponent to play at least once in each pair.

Lemma 1.82 (Gledel and O. [GO23]). Let H = (X ,F) be a hypergraph. Suppose that Avoider (resp. En-

forcer) plays last in H. Let (a1, b1), . . . , (an, bn) be pairwise disjoint pairs of vertices, and let v ̸∈
n⋃

i=1

{ai, bi}.

Avoider (resp. Enforcer) has a strategy which forces Enforcer (resp. Avoider) to claim at least one vertex
in each pair (ai, bi). Enforcer (resp. Avoider) has a strategy which forces Avoider (resp. Enforcer) to claim
v and at least one vertex in each pair (ai, bi).

Proof. By symmetry of the result, we do the proof when Avoider claims the last vertex. Consider the
following strategy for Avoider:

• If Enforcer claims a vertex in a pair (ai, bi), Avoider claims the other vertex of the pair.

• Otherwise, Avoider claims any vertex that is not in a pair.

By construction, when it is Enforcer’s turn, in any pair in which he has played, Avoider has also played.
Therefore, when it is Avoider’s turn, there is at most one pair of vertices in which he has to play. As Avoider
plays the last move, whenever it is his turn to play, the number of remaining vertices is odd. Therefore, if
Enforcer does not play in a pair, at least one vertex in no pair will be available for Avoider. Thus, Avoider
has a strategy to force Enforcer to claim at least one vertex in each pair (ai, bi).

Now, consider the following strategy for Enforcer:

• If Avoider claims a vertex in a pair (ai, bi), Enforcer claims the other vertex of the pair.

• If Avoider claims v, if there exists at least one pair (a, b) in which Avoider has not played, Enforcer
claims a and considers now that b is the new vertex that Avoider will be forced to claim instead of v.

• Otherwise, Enforcer claims any vertex that is not in a pair nor v.

For the same reason, with this strategy, when it is Avoider’s turn, in any pair in which he has played,
Enforcer has played too. When it is Enforcer’s turn, note that the number of remaining moves is even, and
there always exists exactly one vertex that is not in a pair, and that Enforcer wants Avoider to claim. Thus,
the number of vertices on which Enforcer cannot play before Avoider is odd. Therefore, Enforcer always has
an available move that fulfills this strategy.

Corollary 1.81 can also be applied in the Avoider-Enforcer convention, as follows:

38

x

y

(a) Example of a hypergraph. Here x and y
satisfy the hypothesis of the Super Lemma.

M

B

(b) We apply the Super Lemma, and add x
to the vertices claimed by Maker and y to the
vertices claimed by Breaker.

Figure 1.10: Application of the Super Lemma

Corollary 1.83. Let H = (X ,F) be a hypergraph. Let (a1, b1), . . . , (an, bn) be pairwise disjoint pairs of
vertices such that any hyperedge f ∈ F contains a pair (ai, bi). Then Avoider wins the Avoider-Enforcer
game on H.

Pairing strategies in Avoider-Enforcer games will be an important argument to prove that computing the
winner of an Avoider-Enforcer game is PSPACE-complete in Chapter 2.

1.4.5 Symmetries and Super Lemma

In games on graphs, it is often the case that symmetries appear. For example, in Arc Kayles [BDO24],
Influence [DOP24] or the Largest connected subgraph game [BFMIN22], it was shown that some symmetric
strategies can be used to compute the outcome of games with some symmetric properties. However, these
properties are very restrictive, and sometimes, the board has no global symmetries but only local ones. The
next lemma, that we first introduced in [BDD+23], answers the question of how to handle local symmetries.
This lemma can be used in several games, see [DGI+23, BHOP], and therefore, it has been given the name
of Super Lemma.

Lemma 1.84 (Super Lemma, Maker-Breaker version). Let H = (X ,F) be a hypergraph and let VM (resp.
VB) be the vertices already claimed by Maker (resp. Breaker). Let x, y ∈ X \ (VM ∪ VB) be two unclaimed
vertices such that for any S ⊂ 2X\{x,y}, we have S ∪ {x} ∈ F if and only if S ∪ {y} ∈ F . Then (H, VM , VB)
and (H, VM ∪ {x}, VB ∪ {y}) have the same outcome.

The main idea behind the Super Lemma is that, if two vertices play the same role, when a player will
want to claim one of them, his opponent will want to claim the second one, and therefore, at the end, each
player will have claimed one, see Figure 1.10.

Proof. Suppose that Maker has a winning strategy S in (H, VM ∪ {x}, VB ∪ {y}). We provide a winning
strategy for her in (H, VM , VB) as follows:

• While Breaker does not claim a vertex in {x, y}, Maker claims the same vertex as she would have
claimed according to S.

• If Breaker claims a vertex in {x, y}, Maker answers by claiming the other vertex in {x, y}.

• If only {x, y} are remaining, Maker claims x.

Following this strategy, as S was a winning strategy in (H, VM ∪{x}, VB ∪{y}), there exists a hyperedge
e ∈ F in which all the vertices are claimed by Maker. If x /∈ e, Maker has also claimed all the vertices of e
in (H, VM , VB). If x ∈ e, Maker has claimed all the vertices of S = e \ {x}, and one vertex among {x, y}.
By hypothesis, as e = S ∪ {x} ∈ F , we have e′ = S ∪ {y} ∈ F . Therefore, Maker has claimed either all the
vertices of e or all the vertices of e′ and has won.

39

r

r0

x1

x2

y1

y2

z1

z2

(a) Apply the Super Lemma
to {(z2, x2), (z1, x2)} and
{(y2, x1), (y1, x1)}

r

r0

x1

x2

y1

y2

z1

z2

M

B

M

B

(b) We can now apply the Su-
per Lemma to the pair of edges
{(r, x2), (r, x2)}.

r

r0

x1

x2

y1

y2

z1

z2

M

B

M

B

M

B

(c) The resulting graph after appli-
cation of the Super Lemma.

Figure 1.11: Application of the Super Lemma to solve the P4-game in a complete binary tree. Labelled M
edges (in red) are claimed by Maker and labelled B edges (in blue) are claimed by Breaker. It is now easy
to see that the outcome of the game is N

Suppose now that Breaker has a winning strategy S in P ′ = (H, VM ∪ {x}, VB ∪ {y}). Breaker follows
the following strategy in P = (H, VM , VB):

• While Maker does not claim a vertex in {x, y}, Breaker claims the same vertex as he would have
claimed according to S.

• If Maker claims a vertex in {x, y}, Breaker answers by claiming the other vertex in {x, y}.

• If only {x, y} are remaining, Breaker claims y.

Following this strategy until the end, by hypothesis in P ′, for any hyperedge e ∈ F , there is a vertex
claimed by Breaker. Let e be a hyperedge after the game played in P . If {x, y} ⊂ e, then Breaker has played
in e, as he has played one vertex among x and y. If y /∈ e, as there is a vertex z ∈ e that Breaker has claimed
following S in P ′, he also has claimed z in P as z /∈ {x, y}. If y ∈ e, consider S = e \ {y}. By hypothesis,
S ∪ {x} ∈ F . Therefore, in P ′, there exists a vertex z ∈ S that Breaker has claimed (as z ∈ S ∪ {x} and
Maker has claimed x). Therefore, z ∈ e, and once again, Breaker has claimed a vertex in e. Finally, for any
e ∈ F , there exists z ∈ e claimed by Breaker, so Breaker has won.

The Super Lemma is very general. Moreover, using also Lemma 1.74, it can be applied even with vertices
that do not satisfy the hypothesis of the lemma at the beginning of the game, but which will satisfy them after
other vertices have been played. By applying twice the Super Lemma in the tree provided in Figure 1.11,
we see that the P4-game on this tree has outcome N , as on the resulting graph, only the edge (r, r0) is
unclaimed.

This lemma will be used in almost all the chapters of this thesis to simplify some graphs, and will be
the main tool in Chapter 4 to prove that the Maker-Breaker domination game is FPT parameterized by the
modular-width of the input graph.

Finally, the proof provided for the Maker-Breaker version of the Super Lemma consists mostly in pairing
x and y and applying the same strategy in the rest of the graph. Therefore, the same proof can be applied
in the Avoider-Enforcer convention, which leads to the following lemma.

Lemma 1.85 (Super Lemma, Avoider-Enforcer version). Let H = (X ,F) be a hypergraph and let VA (resp.
VE) be the vertices already claimed by Avoider (resp. Enforcer). Let x, y ∈ X \ (VA ∪ VE) be two unclaimed
vertices such that for any S ⊂ 2X\{x,y}, we have S ∪ {x} ∈ F if and only if S ∪ {y} ∈ F . Then (H, VA, VE)
and (H, VA ∪ {x}, VE ∪ {y}) have the same outcome.

40

Proof. Suppose that Avoider has a winning strategy S in (H, VA ∪ {x}, VE ∪ {y}). We provide a winning
strategy for her in (H, VA, VE) as follows:

• While Enforcer does not claim a vertex in {x, y}, Avoider claims the same vertex as she would have
claimed according to S.

• If Enforcer claims a vertex in {x, y}, Avoider answers by claiming the other vertex in {x, y}.

• If only {x, y} are remaining, Avoider claims x.

Following this strategy until the end, by hypothesis in P ′, for any hyperedge e ∈ F , there is a vertex
claimed by Enforcer. Let e be a hyperedge after the game played in P . If {x, y} ⊂ e, then Enforcer has
played in e, as he has played one vertex among x and y. If y /∈ e, as there is a vertex z ∈ e that Enforcer
has claimed following S in P ′, he also has claimed z in P as z /∈ {x, y}. If y ∈ e, consider S = e \ {y}.
By hypothesis, S ∪ {x} ∈ F . Therefore, in P ′, there exists a vertex z ∈ S that Enforcer has claimed (as
z ∈ S ∪ {x} and Avoider has claimed x). Therefore, z ∈ e, and once again, Enforcer has claimed a vertex in
e. Finally, for any e ∈ F , there exists z ∈ e claimed by Enforcer, so Avoider has won.

Suppose now that Enforcer has a winning strategy S in P ′ = (H, VA ∪ {x}, VE ∪ {y}). Enforcer follows
the following strategy in P = (H, VA, VE):

• While Avoider does not claim a vertex in {x, y}, Enforcer claims the same vertex as he would have
claimed according to S.

• If Avoider claims a vertex in {x, y}, Enforcer answers by claiming the other vertex in {x, y}.

• If only {x, y} are remaining, Enforcer claims y.

Following this strategy, as S was a winning strategy in (H, VA ∪ {x}, VE ∪ {y}), there exists a hyperedge
e ∈ F in which all the vertices are claimed by Avoider. If x /∈ e, Avoider has also claimed all the vertices of
e in (H, VA, VE). If x ∈ e, Avoider has claimed all the vertices of S = e \ {x}, and one vertex among {x, y}.
By hypothesis, as e = S ∪ {x} ∈ F , we have e′ = S ∪ {y} ∈ F . Therefore, Avoider has claimed either all the
vertices of e or all the vertices of e′ and Enforcer has won.

However, the Super Lemma cannot in general be applied in the Maker-Maker or the Avoider-Avoider
convention. For example, in the graph of Figure 1.12, Alice wins in four moves, but if we apply the Super
Lemma to (b1, b2), which satisfy the hypothesis of the lemma, Bob can ensure at least a draw.

41

r

x1 x2

y1 y2 z1 z2

a1 a2 b1
A

b2
B

c1 c2 d1 d2

Figure 1.12: A counterexample of the Super Lemma in Maker-Maker. The winning sets are all the paths
going from r to a leaf together with the two hyperedges shown in the figure. This hypergraph is a win for
Alice, since it is 4-uniform, and she can win in four moves. But if we apply the Super Lemma to (b1, b2),
Bob can ensure a draw: If Alice does not play r with her first move, Bob plays it and then ensure a draw
by claiming one of x2, y2 or z1. If she does, Bob claims x2. Alice is forced to play x1 otherwise Bob plays it
and draws. Then he plays y2, forcing for the same reason Alice to claim y1. Then Bob wins by claiming z1.

42

Chapter 2

Complexity of the different
conventions

Gonna catch ’em all.

This chapter focuses on the general complexity of two conventions of positional games. Despite the fact
that determining the winner of a Maker-Breaker game is PSPACE-complete since Schaefer [Sch78] in 1978,
most of the other conventions have remained open during a long time. An argument from Byskov [Bys04]
solved Maker-Maker games in 2004, and the Avoider-Avoider convention has remained open until 2019,
when it was proved to be PSPACE-complete by Burke and Hearn [BH19]. We present here two new PSPACE-
hardness reductions which prove that Avoider-Enforcer and Client-Waiter games are PSPACE-complete.

In Section 2.1 we will prove that Avoider-Enforcer games are PSPACE-complete. In Section 2.2, we will
prove that this is also the case for Client-Waiter games. Finally, in Section 2.3, we reduce these games to
the domination game under Avoider-Enforcer and Waiter-Client conventions.

This chapter contains the results of two collaborations. The first one was with Valentin Gledel, and was
published in STACS 2023 [GO23]. The second one is a collaboration with Valentin Gledel, Sebastien Tavenas
and Stéphan Thomassé [GOTT].

2.1 Avoider-Enforcer games are PSPACE-complete

This section is dedicated to proving the PSPACE-completeness of the Avoider-Enforcer convention, by re-
duction from QBF. The proof is divided into four parts. First, we present the reduction and introduce the
legitimate order on the vertices in Subsection 2.1.1, which consists is the order that mimics the valuation of
QBF. Secondly, we prove that if this order is respected, it simulates QBF in Subsection 2.1.2. Then we prove
that if Enforcer respects the order, Avoider is forced to respect it too, otherwise he loses in Subsection 2.1.3.
Next, we prove that if Avoider respects the order, it cannot benefit Enforcer not to respect it in Subsec-
tion 2.1.4. Finally, in Subsection 2.1.5, we conclude the proof and present a tool to make the hypergraph
6-uniform.

Theorem 2.1. Computing the outcome of an Avoider-Enforcer game is PSPACE-complete, even restricted
to hypergraphs of rank 6.

First, we recall that, according to Theorem 1.61, Avoider-Enforcer games are in PSPACE.

43

2.1.1 Construction of the hypergraph and of the order

Construction of the hypergraph

Given a QBF-formula of the form ψ = ∀X1∃X2, . . . ,∀X2n−1∃X2nφ, with φ a 3-CNF formula, we construct
a hypergraph H = (X ,F) whose vertex set is X = {x1, x1, . . . , x2n, x2n, u1, u2, . . . , u6n}.

A round in ψ corresponds to a step i during which Falsifier gives a valuation to X2i−1 and then
Satisfier gives a valuation to X2i. In this reduction, for any round in ψ, we consider ten vertices and
eight hyperedges. Four of the ten vertices are {x2i−1, x2i−1, x2i, x2i}, and the six others vertices are
u6i−5, u6i−4, u6i−3, u6i−2, u6i−1, u6i. The eight hyperedges are constructed as follows:

A2i = (x2i, x2i, u6i+1, u6i+3)

C+
6i = (u6i, u6i+1, u6i+3, x2i)

C+
6i−2 = (u6i−2, u6i−1, u6i+1, x2i)

C+
6i−4 = (u6i−4, u6i−3, u6i−1, x2i−1)

B2i−1 = (x2i−1, x2i−1, u6i−1)

C−
6i = (u6i, u6i+1, u6i+3, x2i)

C−
6i−2 = (u6i−2, u6i−1, u6i+1, x2i)

C−
6i−4 = (u6i−4, u6i−3, u6i−1, x2i−1)

If some of these vertices do not exist (if i is too large), we still add the hyperedges, but with fewer vertices in
them. For instance, A2n = {x2n, x2n}. Moreover, for each clause Fj = lj1 ∨ l

j
2 ∨ l

j
3 of ψ, we add a hyperedge

Dj . For k ∈ {1, 2, 3}, if ljk is a positive variable Xp, then xp is in Dj , if l
j
k is a negative one ¬Xp, then xp is

in Dj . Moreover, If p = 2i− 1 is odd, then u6i−1 is in Dj , if p = 2i is even, then u6i+1 is in Dj .
For instance if F1 = X1 ∨X2 ∨ ¬X4, we have D1 = (x1, x2, x4, u5, u7, u13).

Finally, the CNF game φ is reduced to the hypergraph H = (X ,F) with
X = {{xi}1≤i≤2n ∪ {xi}1≤i≤2n ∪ {uj}1≤j≤6n}

F =
{
{A2i}1≤i≤n ∪ {C+

2i}1≤i≤3n ∪ {C−
2i}1≤i≤3n ∪ {B2i−1}1≤i≤n ∪ {Dj}1≤j≤m

}
Legitimate order

With this construction, we say that Avoider and Enforcer follow a legitimate order if they claim board
elements in the following order for increasing i:

1. Avoider starts and claims u6i−5.

2. Enforcer claims u6i−4.

3. Avoider claims u6i−3.

4. Enforcer claims one of x2i−1 or x2i−1.

5. Avoider claims the remaining vertex in {x2i−1, x2i−1}
6. Enforcer claims u6i−2.

7. Avoider claims u6i−1.

8. Enforcer claims u6i.

9. Avoider claims one of x2i or x2i.

10. Enforcer claims the remaining vertex in {x2i, x2i}.

We say that the game is restricted to the legitimate order if Avoider and Enforcer claims the vertices
according to this order, i.e. their only choices are among vertices xi and xi.

2.1.2 Winner in the legitimate order

Lemma 2.2. When the game is restricted to the legitimate order, Avoider has a winning strategy in the
Avoider-Enforcer game on H if and only if Satisfier has a winning strategy for the 3-QBF game on φ.

44

Proof. If the order of moves is legitimate, the only choices available for Avoider and Enforcer are on the
vertices xi and xi. For each 1 ≤ i ≤ 2n, Avoider claims one of xi, xi and Enforcer the other. Therefore, if
both Avoider and Enforcer play one vertex in {xi, xi}, we define the underlying valuation given to ψ as the
following one:

Xi =

{
⊤ if Avoider has claimed xi and Enforcer has claimed xi
⊥ if Avoider has claimed xi and Enforcer has claimed xi

Consider a game played on H for which both Avoider and Enforcer have respected the legitimate order
through the whole game.

Claim 2.3. Avoider won the game on H if and only if the formula ψ is satisfied by the underlying valuation
of the Xis.

Proof of the claim. Since the legitimate order is respected, Enforcer claimed all the vertices u2i and thus
played at least once in all the hyperedges C+

2i and C
−
2i. Moreover, for each pair of variables (xi, xi), Enforcer

claimed one of the vertices of the pair, and so he has claimed at least one vertex in all the hyperedges Ai

and Bi. Thus, the only hyperedges that could possibly be fully played by Avoider are the hyperedges Dj .
Since, in the legitimate order, Avoider claimed all the vertices u2i+1, a hyperedge Dj corresponding to

a clause Fj is fully played by Avoider if and only if she played on all the vertices x(ljk) for lk ∈ Fj , where

x(ljk) = xp if ljk = Xp and x(ljk) = xp if ljk = ¬Xp. If this is the case, then this means that the formula ψ
is not satisfied by the underlying valuation because the clause Fj has all its literals assigned to ⊥. On the
contrary, if the formula ψ is satisfied by the underlying valuation, then, for all clause Fj , at least one of the
literals in it is assigned to ⊤ and so Enforcer played at least once in each hyperedge Dj .

Therefore, Avoider won the game on H if and only if ψ is satisfied. ⋄

Suppose Satisfier has a winning strategy S on ψ. We define a strategy for Avoider as follows: Whenever
Avoider has to play a vertex x2k or x2k, Avoider considers the underlying valuation given to the Xis with
i < 2k. Then, if Satisfier had put X2k to ⊤, she claims x2k. Otherwise, she claims x2k. With this strategy,
at the end of the game, the underlying valuation of the variables of H will be the same as the valuation
given by the game that Satisfier played on ψ. Since Satisfier has a winning strategy on ψ, the underlying
valuation satisfies ψ and so Avoider wins the game.

Similarly, if Falsifier has a winning strategy, Enforcer can follow the strategy in such a way that at the
end, the valuation of variables in the game played by Falsifier corresponds to the underlying valuation in H.
Since Falsifier wins on ψ, Enforcer wins the game on H.

2.1.3 Enforcer’s winning strategy

We prove that, if Enforcer has a winning strategy when the legitimate order is respected by both players,
then he has a winning strategy when it is not. We introduce here several sets of variables, defined in such a
way that the global strategy can be decomposed into local ones according to these sets.

For i = 1 to 4n, we define the set of vertices Si as S4n = {u6n, x2n, x2n} and for i < 4n:

• if i = 4k, Si = {u6k, x2k, x2k, u6k+1} ∪ Si+1

• if i = 4k − 1, Si = {u6k−2, u6k−1} ∪ Si+1

• if i = 4k − 2, Si = {x2k−1, x2k−1} ∪ Si+1

• if i = 4k − 3, Si = {u6k−4, u6k−3} ∪ Si+1

Lemma 2.4. If Enforcer has a winning strategy in H when the legitimate order is respected by the two
players, then he has a winning strategy in H.

45

Proof. Suppose Enforcer has a winning strategy when the legitimate order is respected. Consider a strategy
for Enforcer in which he plays according to the legitimate order until Avoider does not. If Avoider respects
the order until all the vertices are played, by assumption, Enforcer wins. Otherwise, the proof of the following
claim provides a winning strategy for Enforcer.

Claim 2.5. If, during the game, Avoider plays in a set Si in which Enforcer has not played yet, then, after
this move, Enforcer has a strategy to win the game.

Proof of the claim. The proof is by induction on i.
First, notice that each Si has an odd number of vertices and, as the total number of vertices in H is 10n,

there is also an odd number of vertices outside Si. Therefore, if Avoider plays first in a set Si for some i,
Enforcer answers by playing an arbitrary vertex that is not in Si and considers an arbitrary pairing outside
Si, which exists as there is an even number of vertices outside Si after his move. This way, Avoider will be
the next player to play in Si.

Base cases:
• Case i = 4n: If Avoider plays first is S4n, by pairing the two other vertices in S4n, and by using
Lemma 1.82, Enforcer can force Avoider to play another vertex in S4n. Hence, as C+

6n = (u6n, x2n),
C−

6n(u6n, x2n) and A2n = (x2n, x2n) are three hyperedges, Avoider will claim the two vertices of one of
them and will lose.

• Case i = 4n − 1: As shown previously, Enforcer has a strategy such that Avoider is the next player
to play in S4n−1. If Avoider has played at least one of her two first moves in S4n, she has lost by
the case i = 4n. Otherwise, she has claimed exactly u6n−2 and u6n−1. In this case, Enforcer claims
u6n and pairs x2n and x2n and by Lemma 1.82 he forces Avoider to claim all the vertices of either
C+

6n−2 = {u6n−2, u6n−1, x2n} or C−
6n−2 = {u6n−2, u6n−1, x2n}.

Induction steps:
Suppose that the first time Avoider does not respect the order of the move, she plays in a set Si for

i ≤ 4n− 2. Enforcer plays a vertex outside Si. If the second move of Avoider in Si is in Si+1, Enforcer wins
by induction hypothesis. Thus, we can suppose that Avoider has claimed two vertices in Si \Si+1. Moreover,
as Enforcer has arbitrarily paired the vertices outside Si, we describe here the strategy in Si, and Enforcer
plays according to the pairing outside Si. This strategy ensures that the moves in Si alternate between both
players.

• Case i = 4k: Avoider has played twice in {u6k, x2k, x2k, u6k+1}. At least one of {u6k, x2k, x2k} is
available. Enforcer claims it. Avoider has to claim the third vertex in this quadruple, otherwise, she
plays first in Si+1 and loses by induction, and necessarily one of the three vertices she has claimed is
u6k+1. Enforcer claims u6k+2. Avoider either plays first in Si+2 and loses by induction hypothesis,
or claims u6k+3. At this moment, Avoider has claimed the vertices u6k+1 and u6k+3, and two of the
vertices of {u6k, x2k, x2k}. So she has filled up one of the hyperedges C+

6k = (u6k, u6k+1, u6k+3, x2k),
C−

6k = (u6k, u6k+1, u6k+3, x2k) or A2k = (x2k, x2k, u6k+1, u6k+3).

• Case i = 4k − 1: Avoider has claimed u6k−2 and u6k−1. Enforcer claims u6k. Avoider has to play on
vertex in {x2k, x2k, u6k+1}, otherwise she plays first in Si+2 and loses by induction. Enforcer claims
either x2k or x2k, as at least one of them is available. If Avoider plays a vertex in Si+2 she loses by
induction. So she has to play the last vertex available in Si \ Si+1. With this strategy, Avoider has
necessarily claimed u6k+1 and one of x2k and x2k. Thus, she has claimed all the vertices of either
C+

6k−2 = (u6k−2, u6k−1, u6k+1, x2k) or C
−
6k−2 = (u6k−2, u6k−1, u6k+1, x2k).

• Case i = 4k − 2: Avoider has claimed x2k−1 and x2k−1. Enforcer claims u6k−2. Either Avoider plays
first in Si+2 and loses by induction, or she claims u6k−1, the last available vertex in Si+1 and loses by
having filled up B2k−1 = (x2k−1, x2k−1, u6k−1).

46

• Case i = 4k − 3: Avoider has claimed u6k−4 and u6k−3. Enforcer claims x2k−1. Avoider has to claim
x2k−1, otherwise she plays first in Si+2 and loses by induction. Then Enforcer claims u6k−2. If Avoider
plays in Si+3 she loses by induction. The last vertex available in Si \ Si+3 is u6k−1, and if Avoider
claims it, she loses by having claimed all the vertices C−

6k−4 = (u6k−4, u6k−3, u6k−1, x2k−1).

By applying this induction, at any moment of the game, if Avoider plays first in a set Si, she loses. ⋄

Finally, if Enforcer has played according to the legitimate order, at any moment of the game, Avoider
has to play in a set Si in which Enforcer has already played. Therefore, she has to respect the order of the
moves. The only moment when she can change this order is by claiming u6k+1 instead of one of the vertices
x2k, x2k. But if she does so, Enforcer can claim one of them, for instance x2k, and Avoider will be forced
to claim x2k. If this happens, everything happens as if Avoider has claimed x2k first and u6k+1 after. Since
these moves could have occurred in the legitimate order, the strategy can then continue as if the order has
been respected.

To conclude, if Enforcer has a winning strategy when the legitimate order is respected, he has one in H
even without this restriction.

2.1.4 Avoider’s winning strategy

We now prove that, if Avoider has a winning strategy when the legitimate order is respected by both players,
then she has a winning strategy when it is not. The main idea of the strategy is to respect the order, while
Enforcer respects it. If at some point, Enforcer does not respect the order, Avoider, can choose a valuation
that satisfies ψ, and has a pairing strategy to force Enforcer to claim for each pair (xi, xi), either the vertex
corresponding to any valuation she has chosen or the odd uj that follows it. By construction, any hyperedge
containing a vertex xi or xi also contains that vertex uj , and this will prove that whenever Enforcer does
not respect the order, it benefits Avoider.

Lemma 2.6. If Avoider has a winning strategy in H when the legitimate order is respected by the two
players, then she has a winning strategy in H.

Proof. Suppose Avoider has a winning strategy when the legitimate order is respected. We now describe a
winning strategy for Avoider in the general case.

While Enforcer respects the legitimate order, Avoider also respects it. Suppose that at some moment of
the game, Enforcer does not respect the legitimate order. Denote by yA the vertex he would have played
according to the legitimate order, and by yE the vertex he has claimed instead. If yA is a vertex x2i or
x2i, Avoider pairs it with u6i+1 and continues as if Enforcer had to play u6i+2. If this is the case, consider
yA = u6i+2. Note that according to Lemma 1.78, we can suppose that yE is not a vertex uj with j odd.
Indeed, for each vertex u2i+1, the hyperedges that contain the previous vertex in the legitimate order (if this
vertex is a vertex xj or xj this is true for either of them) also contain u2i+1.

Denote by k the smallest integer such that yE /∈ Sk, and by k′ the largest integer such that yA ∈ Sk′ . We
consider k = 4n + 1 if yE ∈ S4n, with S4n+1 = ∅. Note that all the vertices outside Sk′ have already been
played or are paired, and that Sk′ \ Sk is then the set of vertices perturbed by the move of Enforcer. As all
the sets Si have an odd number of vertices, we know that the number of remaining vertices outside Sk is odd,
as an even number of moves have been played. By assumption, Avoider was following a winning strategy
for the legitimate order. She can then consider an arbitrary sequence of moves for Enforcer following the
legitimate order and her answers according to her strategy until all the vertices in Sk′ \ Sk are all claimed.
According to these moves, we will denote by xEj the vertex among (xj , xj) claimed by Enforcer and by xAj
the vertex played by Avoider.

Avoider claims yA, the vertex that Enforcer should have claimed according to the legitimate order, and
will consider one strategy in Sk and another one outside Sk:

• In H \ Sk, she plays according to a pairing strategy, that will be presented in the next paragraph.

47

• In Sk, Avoider considers the strategy she would have played if all the vertices outside Sk were played
according to the legitimate order, with the vertices xEj claimed by Enforcer and the vertices xAj claimed
by Avoider.

The pairing we define is the following one: (u6i−4, x
A
2i−1), (u6i−3, u6i−6), (xE2i−1, u6i−1), (u6i−2, x

A
2i),

(u6i+1, x
E
2i). This pairing concerns all the vertices that have to be played after yA in the legitimate order

that are not in Sk, and we consider only pairs containing at least one vertex outside Sk. Note that by
construction, exactly one vertex of this pairing is already played, and exactly one paired with a vertex in
Sk. Therefore, to make the pairing contain only vertices not played and outside Sk, some modifications are
done. These modifications are presented in Table 2.1. By applying Lemma 1.82, Avoider can ensure that
Enforcer plays at least one in each of these pairs.

yA changes
u6i−4 u6i−3 ↔ xA2i−1

x2i−1, x2i−1 x∗2i−1 ↔ u6i−1

u6i−2 u6i−1 ↔ xA2i
u6i u6i+3 ↔ xA2i

yE changes
u6i−4 no changes

x2i−1, x2i−1 x∗2i−1 ↔ u6i−4

u6i−2 no changes
u6i no changes

x2i, x2i x∗2i ↔ u6i+1, u6i−2 ↔ u6i

Table 2.1: Changes of the matching. x∗j refers to the variable in {xj , xj} that has not been played, arrows
represent new pairs of vertices in the matching.

Claim 2.7. The pairing strategy ensures that Enforcer plays at least once in each hyperedge Ai, Bi or Ci

containing all their vertices in Sk′ and at least one outside Sk.

Proof of the claim.
First, if the hyperedge contains no vertex whose pairing has been modified because of their belonging to

yA or yE , it contains two paired vertices. We show in bold text the paired vertices:

A2i = (xA2i,x
E
2i,u6i+1, u6i+3)

CA
6i = (u6i, u6i+1,u6i+3, x

A
2i)

CE
6i = (u6i,u6i+1, u6i+3,x

E
2i)

CA
6i−2 = (u6i−2, u6i−1, u6i+1,x

A
2i)

CE
6i−2 = (u6i−2, u6i−1,u6i+1,x

E
2i)

B2i−1 = (xA2i−1,x
E
2i−1,u6i−1)

CA
6i−4 = (u6i−4, u6i−3, u6i−1,x

A
2i−1)

CE
6i−4 = (u6i−4, u6i−3,u6i−1,x

E
2i−1)

We prove now that the first hyperedges of the matching also contains two paired vertices, according to
the changes presented in Table 2.1. Recall first that if Enforcer was supposed to play in {x2i, x2i}, Avoider
pairs this vertex with u6i+1 and considers yA = u6i+2. The only one hyperedge among the Ai, Bi and Ci

that was concerned with this change is Ai, in which two vertices are now paired. In any other case, the
following vertices are paired:

• If yA = u6i−4, only the hyperedges CE
6i−4 and CA

6i−4 are concerned by the changes. In the former xE2i−1

is paired with u6i−1, in the latter xA2i−1 is paired with u6i−3.

• If yA ∈ {x2i−1, x2i−1}, the only hyperedges concerned by the change is B2i−1. In it, the other vertex
in {x2i−1, x2i−1} is paired with u6i−1

• If yA = u6i−2, only the hyperedges CE
6i−2 and CA

6i−2 are concerned by the changes. In the former xE2i
is paired with u6i+1, in the latter xA2i is paired with u6i−1.

• If yA = u6i, only the hyperedges CE
6i and C

A
6i are concerned by the changes. In the former xE2i is paired

with u6i+1, in the latter xA2i is paired with u6i+3.

For the last hyperedges that contain vertices of the matching, the following happens:

48

• If yE = u6i−4, the pairing stops at u6i−3. The only two hyperedges that contain at least one vertex in
Sk and one vertex outside Sk are C+

6i−4 and C−
6i−4, in which Enforcer has claimed yE .

• If yE = x2i−1 or x2i−1, the pairing stops after the second vertex in {x2i−1, x2i−1}. The only one
hyperedge containing at least one vertex in Sk and one outside Sk is B2i−1, in which Enforcer has
already claimed yE .

• If yE = u6i−2, the pairing stops at u6i−1. The only two hyperedges that contain at least one vertex in
Sk and one vertex outside Sk are C+

6i−2 and C−
6i−2, in which Enforcer has claimed yE .

• If yE = u6i, the pairing stops at u6i+1. The three hyperedges that contain both vertices in Sk and
vertices outside Sk are C+

6i, C
−
6i and A2i. In C+

6i, C
−
6i, Enforcer has claimed yE , and in A2i, Enforcer

will play one of xE2i or u6i+1 as these two vertices are paired together.

• If yE = x2i or x2i, the pairing stops at u6i+1. The three hyperedges that contain vertices inside Sk

and outside Sk are C+
6i, C

−
6i and A2i. As the second vertex in {x2i, x2i} is paired with u6i+1, either

Enforcer has claimed both x2i and x2i, and any of these three hyperedges contains at least one of them;
or Enforcer has claimed u6i+1 which is in these three hyperedges.

If the pairing stops because it goes until the end (i.e. k = 4n + 1), one vertex is not paired. According
to Lemma 1.82, as Enforcer plays the last move in H, Avoider can force him to play it and still play once in
each pair of the pairing.

Finally, in any hyperedge Ai, Bi or Ci containing at least one vertex of the matching, Enforcer has played
at least one vertex. ⋄

Now, we can prove that the strategy we defined for Avoider is a winning strategy. In all the hyperedges
Ai, Bi or Ci, Enforcer played at least once. Indeed, if Enforcer has respected the order until he plays in one
of these hyperedges, there is nothing to do. Otherwise, by Claim 2.7, Avoider can force Enforcer to play in
it as this hyperedge is considered in a set of hyperedges in which Enforcer has not respected the order, and
thus contains two paired vertices.

In the hyperedges Dj , as the strategy in the legitimate order is a winning strategy, it forces at least
one vertex xi or xi to be claimed by Enforcer in Dj (since all the vertices uk of odd indices are played by
Avoider in the legitimate order). Then, by construction, if when this vertex has to be claimed the order was
respected, Enforcer has played it. If the order was not respected, then Avoider has paired this vertex with
the next vertex uk of odd index, forcing Enforcer to play either that vertex uk or the vertex he would have
played among xi and xi according to the legitimate order. In both cases, Enforcer has played in Dj .

2.1.5 Conclusion

Using the previous lemmas, we can prove Theorem 2.1.

Proof. First, we remind that, according to Theorem 1.61, we know that Avoider-Enforcer games are in
PSPACE. We now prove the PSPACE-hardness of the problem by reduction from 3-QBF.

Let ψ be a QBF quantified boolean formula. Consider the hypergraph H obtained from ψ by following
the construction of Subsection 2.1.1. This construction has polynomial size. According to Lemma 2.2, when
the order is respected, if Satisfier (resp. Falsifier) has a winning strategy in ψ, Avoider (resp. Enforcer) has
a winning strategy in H. Thus, according to Lemma 2.6 (resp. Lemma 2.4), if Avoider (resp. Enforcer) has
a winning strategy on H when the legitimate order is respected, she (resp. he) also has one in general in
H. Thus, Satisfier wins on ψ if and only if, Avoider wins on H. Therefore, determining the winner of an
Avoider-Enforcer game is PSPACE-complete.

The construction provides a hypergraph H in which all the hyperedges have of size at most six, de-
termining the winner of an Avoider-Enforcer game is PSPACE-complete even restricted to hypergraphs or
rank 6.

49

This proof builds a hypergraph of rank 6, which is not uniform. A similar argument to the one used by
Rahman and Watson [RW21] proves that the hypergraphs can be made 6-uniform without loss of generality.

Lemma 2.8. Let H = (X ,F) be a hypergraph of rank k. Let m = min
e∈F
|e|. If m < k, there exists a hypergraph

H′ = (X ′,F ′) of rank k where min
e∈F
|e| = m+ 1, having |F ′| ≤ 2|F| and |X ′| ≤ |X |+ 2 such that Avoider has

a winning strategy in the Avoider-Enforcer game on H if and only if she has one in H′.

Proof. Let H = (X ,F) be a hypergraph of rank k. Let m = min
e∈F
|e|. We define H′ = (X ′,F ′) as follows. We

start from X ′ = X . We add two vertices {a1, a2} in X ′. For each hyperedge e ∈ F , we add hyperedges in
F ′ as follows:

• If |e| > m, we add a copy of e in F ′.

• If |e| = m, we add two hyperedges e1 = e ∪ {a1} and e2 = e ∪ {a2} in F ′.

We have |X ′| = |X |+ 2, |F ′| ≤ 2|F| and min
e∈F ′
|e| = m+ 1. The construction of H′ is provided in Figure 2.1

Now, by the Super Lemma, applied to a1 and a2 in H′, we know that (H′, ∅, ∅) has the same outcome as
(H′, {a1}, {a2}). They, by Lemma 1.74, (H′, {a1}, {a2}) and H has the same outcome, as H is exactly the
hypergraph obtained with this reduction.

Figure 2.1: Application of Lemma 2.8. The hyperedge of size 2 has been transformed into two hyperedges
of size 3.

Corollary 2.9. Avoider-Enforcer is PSPACE-complete even restricted to 6-uniform hypergraphs

Proof. The hypergraph obtained in the proof of Theorem 2.1 has rank k and all its hyperedges have size at
least two. Therefore, by applying Lemma 2.8 four times, with m = 2, 3, 4, 5, we obtain a hypergraph having
at most eight more vertices and eight times more hyperedges. Thus, this construction is still polynomial and
the hypergraph obtained is 6-uniform.

2.2 Client-Waiter games are PSPACE-complete

In this section, we will introduce the boolean problem Paired SAT, and we prove its PSPACE-completeness.
From Paired SAT, we prove that determining the winner of a Client-Waiter game is PSPACE-complete, even
restricted to 6-uniform hypergraphs:

50

Theorem 2.10. Computing the winner of a Client-Waiter game is PSPACE-complete, even restricted to
hypergraphs of rank 6.

Subsection 2.2.1 is dedicated to the problem Paired SAT and the proof of its PSPACE-completeness. Then,
in Subsection 2.2.2, we introduce blocks in hypergraphs, which will be the main tool of the proof, as they
allow us to create a pairing strategy even for Client in Client-Waiter games. In Subsection 2.2.3, we present
the construction of the hypergraph H. Then in Subsection 2.2.4, we prove that if Satisfier has a winning
strategy in the instance of Paired SAT then Waiter has a winning strategy in H. Next, in Subsection 2.2.5,
we prove the opposite, i.e., that if Falsifier has a winning strategy in the instance of Paired SAT, then, Client
has one in H. Finally, in Subsection 2.2.6 we introduce a tool to transform the hypergraph into a uniform
one.

2.2.1 Paired SAT is PSPACE-complete

We introduce here the game Paired SAT. The main idea of this game is to introduce a CNF-game mimicking
the fact that one player chooses which variable the second player will have to play on.

Definition 2.11 (Paired SAT). Let φ be a 3-CNF Formula over a set of pair of variables X = {(x1, y1), . . . , (xn, yn)}.
The Paired SAT-game is played by two players, Satisfier and Falsifier as follows: while there is a variable
that has not been assigned a valuation, Satisfier chooses a pair of variables (xi, yi) that she has not chosen
yet and gives a valuation, ⊤ or ⊥, to xi. Then Falsifier gives a valuation to yi. When all the variables
have their valuation chosen, Satisfier wins if and only if the valuation they have provided to the xis and yis
satisfies φ.

Theorem 2.12. Determining the winner of the Paired SAT-game is PSPACE-complete.

Proof. We provide a reduction from QBF. Let ψ = ∃x1∀y1 · · · ∃xn∀yn, φ be a QBF formula. We construct
an instance of the Paired SAT-game (φ′, X) as follows:

• X = {(z0, y0), (x1, t1), (z1, y1), . . . , (xn, tn), (zn, yn)}, where y0, the zis and the tjs are new variables.

• φ′ = φ
∧

1≤i≤n

(yi−1 ⊕ ti ⊕ zi).

where ⊕ refers to the XOR operator and we have:

a⊕ b⊕ c = (a ∨ b ∨ c) ∧ (¬a ∨ ¬b ∨ c) ∧ (¬a ∨ b ∨ ¬c) ∧ (a ∨ ¬b ∨ ¬c).

We prove that Satisfier wins on ψ if and only if she wins on (φ′, X).
First note that whenever two values of a ⊕ b ⊕ c are known, the player who chooses the last value can

always decide to satisfy or not (a ⊕ b ⊕ c). Suppose first that Satisfier has a winning strategy S on ψ, and
consider the following strategy for him on (φ′, X):

• Satisfier chooses to instantiate the pairs (z0, y0), (x1, t1), . . . (xn, tn), (zn, yn) in that order.

• Whenever Satisfier has to choose a value for a variable xi, he follows S with the corresponding values
of the xj and yj for 1 ≤ j < i. This is always possible as he chooses the order

• Whenever Satisfier has to give a value to a variable zi, she gives the value so that yi−1 ⊕ ti ⊕ zi is
satisfied (if i = 0 she can instantiate the variable z0 by either ⊤ or ⊥).

Following this strategy, all the clauses (yi−1 ⊕ ti ⊕ zi) are satisfied as Satisfier always chooses the last
vertex of these clauses (which appears in exactly one of them), and as S was a winning strategy in ψ, it will
satisfy φ, as the variables will be chosen in the same order.

Now Suppose that Falsifier has a winning strategy S on ψ, and consider the following strategy on
(φ′, X, Y):

51

• While Satisfier plays the pairs according to the order (z0, y0), (x1, t1), . . . (xn, tn), (zn, yn), Falsifier gives
to the corresponding ti the value ⊥, and to yi the value given by S.

• If Satisfier plays a pair (xj , tj) before she should, Falsifier still gives the valuation ⊥ to tj and ignores
this move while choosing the valuations of the yi for i ≤ j.

• If Satisfier plays a vertex zj before he should, the first time it happens, all the unplayed variables in
the clause (yj−1 ⊕ tj ⊕ zj) will be played by Falsifier. Therefore, Falsifier can just win by choosing a
good valuation for yj−1 and tj .

Following this strategy, if Satisfier instantiates a variable zi whereas there is j ≤ i such that the variable
xj has not yet been instantiated then Falsifier wins. Indeed, the first time it happens either zi−1 or xi
has not been instantiated (otherwise it already happened when Satisfier instantiated zi−1). Consequently,
Falsifier wins through the clause (yi−1 ⊕ ti ⊕ zi). Otherwise, each time Falsifier has to choose a valuation
for a variable yi, all the vertices xj with j ≤ i have already been played and so, he can play according to S.
As S was a winning strategy, in both cases, Falsifier can make a clause unsatisfied and therefore wins the
game.

2.2.2 Blocks in Client-Waiter games

The main tool of several reductions of positional games is pairing strategies. However, this cannot be
applied to Client-Waiter games, since only Waiter has choices about how to make the pairs. We present
block-hypergraphs and block-strategies that will be used similarly to pairing strategies to ensure that client
can claim some vertices. A block-hypergraph is depicted in Figure 2.2.

Definition 2.13 (Blocks). Let H = (X ,F) be a hypergraph. A block B ⊂ X is a set of vertices such that
|B| = 2k for some k ≥ 1, and any set of k + 1 vertices of B is a hyperedge.

If H can be partitioned into blocks, we say that H is a block-hypergraph.

Figure 2.2: A block hypergraph. The two vertices on the left form a block. The four on the right a second
one. The hyperedge between them is in no block

Lemma 2.14. Let H = (X ,F) be a hypergraph, and let B be a block of H. If Waiter has a winning strategy
in H, she has to propose the vertices of B two by two.

Proof. Suppose that Waiter has a winning strategy in which she does not propose all the vertices of B two

by two. Let k = |B|
2 . The first time she proposes a vertex x ∈ B with a vertex y /∈ B, Client can choose x.

Then, each time Waiter proposes at least one vertex in B, Client claims it. In the end, Client will claim at
least k + 1 vertices of B and therefore will win. Thus, if Waiter has a winning strategy, she has to propose
the vertices of B two by two.

Corollary 2.15. Let H = (X ,F) be a block-hypergraph. If Waiter has a winning strategy in H, any pair of
vertices she proposes belongs to a same block of H.

52

2.2.3 Construction of the hypergraph

Now that block-hypergraphs are defined, we can present the reduction. The main idea of the reduction is
that we construct a block-hypergraph, such that each block corresponds to the valuation that will be given
to a variable.

Let (φ,X) be an instance of Paired SAT where X = {(x1, y1), . . . , (xn, yn)}, and φ =
∧

1≤j≤m

Cj is a 3-CNF

on the variables of X. We build a hypergraph H = (X ,F) as follows.
Let us define the set X of 8n vertices. Let X = ∪

1≤i≤n
Si ∪ Fi, with for 1 ≤ i ≤ n, Si = {s0i , sTi , sFi , s1i }

(gadget which encodes Satisfier’s choice for the variable xi) and Fi = {f0i , fTi , fT
′

i , fFi } (gadget which encodes
Falsifier’s choice for the variable yi).

Now we focus on the construction of the hyperedges.

• The block-hyperedges B = ∪
1≤i≤n

Bi, which make each Si and each Fi a block:

Bi = {H ⊆ Si | |H| = 3} ∪ {H ⊆ Fi | |H| = 3} .

• The pair-hyperedges P = ∪
1≤i≤n

Pi:

Pi =
{
{s0i , sTi , f0i , fTi }, {s0i , fFi , fTi , sFi }, {s0i , fFi , sTi , fT

′

i }, {s0i , sFi , f0i , fT
′

i }
}

• The clauses-hyperedges. Each clause Cj ∈ φ is a set of three literals {ℓ1j , ℓ2j , ℓ3j}. We define first, for

1 ≤ j ≤ m and k ∈ {1, 2, 3}, the set Hk
j which encodes the property that the literal ℓkj is instantiated

to ⊥.

Hk
j =


{{s0i , sTi }} if ℓkj = xi

{{s0i , sFi }} if ℓkj = ¬xi
{{f0i , fTi }, {f0i , fT

′

i }} if ℓkj = yi

{{fFi }} if ℓkj = ¬yi.

We define now the set of hyperedges:

C =
⋃

Cj∈φ

Hj .

with Hj =
{
h1 ∪ h2 ∪ h3 | ∀k ∈ {1, 2, 3}, hk ∈ Hk

j

}
For example, if Cj = x1 ∨ y1 ∨ ¬y2, we have H1

j = {{s01, sT1 }}, H2
j = {{f01 , fT1 }, {f01 , fT

′

1 }} and H3
j =

{{fF2 }}. Finally, we have two hyperedges to encode Cj : Hj = {(s01, sT1 , f01 , fT1 , fF2), (s01, s
T
1 , f

0
1 , f

T ′

1 , fF2)}

The gadget for the pair (xi, yi) is depicted in Figure 2.3.
Intuitively, these hyperedges are constructed in such a way that:

• The block hyperedges B force Waiter to always proposes two vertices in the same set. This way, we
can compute a valuation from the moves of the players

• The pair hyperedges P force Waiter to give to Client the choice of the value of yi after she has made
her choice for xi

• The clause hyperedges C which represents the clauses of φ and make the equivalence between a win
of Waiter and a valuation that satisfies φ

Finally, the reduction associates to the instance (φ,X) of Paired SAT the instance H = (X ,F) with
F = B ∪ P ∪ C of Client-Waiter. This reduction is polynomial as B contains 8n hyperedges, P contains 4n
hyperedges, and C contains at most 8m hyperedges (where m is the number of clause of φ).

We define an underlying valuation of the variables, corresponding to the moves on the hypergraph as
follows:

53

s0i

sTi sFi

s1i

fTi fT
′

i

f0i

fFi

Block Si

Block Fi

Figure 2.3: Gadget for the vertices in Si and Fi. A dashed set represents a block, i.e. all the hyperedges of
size 3 are present in it.

• If Client has claimed sTi , xi = ⊥
• If Client has claimed sFi , xi = ⊤
• If Client has claimed f0i and one of fTi , fT

′

i , yi = ⊥
• If Client has claimed fFi , yi = ⊤

This valuation simulates that the literals corresponding to Client’s claims equal ⊥.

2.2.4 Waiter’s winning strategy

In this section, we prove that if Satisfier has a winning strategy in φ, then Waiter has a winning strategy in
H.

Lemma 2.16. If Satisfier has a winning strategy in φ, then Waiter has a winning strategy in H.

Proof. Let S be a winning strategy for Satisfier, consider a strategy for Waiter as follows. If S selects an
integer 1 ≤ i ≤ n, and puts xi to ⊤ (resp. ⊥), Waiter plays in Block i and selects the pair (s0i , s

T
i) (resp.

(s0i , s
F
i)). Then, she plays the pair corresponding to the two other vertices in the block Si. To compute the

value of yi, she plays (fFi , f
T ′

i) (resp. (fFi , f
T
i)) and finally, the remaining pair of the block Fi. If Client has

chosen fFi , she considers that yi = ⊤, otherwise, she considers that yi = ⊥ in S.
As this strategy always propose vertices in blocks, Client cannot win with the hyperedges in B:

• If Waiter has proposed (s0i , s
F
i), if Client has not chosen s

0
i , as it is in all the hyperedges of Pi, Waiter

cannot lose on Pi. Otherwise, Waiter has claimed sFi , and has proposed the pairs (fTi , f
0
i) and (fFi , f

T ′

i)
which covers all the remaining hyperedges of Pi.

• If Waiter has proposed (s0i , s
T
i), once again, if Client has not chosen s0i , Waiter cannot lose on Pi.

Otherwise, Waiter has claimed sTi , and has proposed the pairs (fT
′

i , f0i) and (fFi , f
T
i) which covers all

the remaining hyperedges of Pi.

We now consider the clauses hyperedges:
Let Cj be a clause of φ. It is sufficient to prove that there exists a 1 ≤ k ≤ 3 such that Waiter has

claimed a vertex in each set of Hk
j . As S was a winning strategy for Satisfier in φ, there exists a literal ℓkj

for k ∈ {1, 2, 3} satisfying Cj .

54

• If ℓkj = xi, by construction of the strategy, Waiter has proposed the pair (s0i , s
T
i), therefore she has

claimed a vertex in Hk
j .

• If ℓkj = ¬xi, by construction of the strategy, Waiter has proposed the pair (s0i , s
F
i), therefore she has

claimed a vertex in Hk
j .

• If ℓkj = yi, by construction of the strategy, Waiter has considered that yi was put to ⊤ according to

the choices of Client, which corresponds to the case where Client has chosen fFi . Therefore, she has

claimed in Hk
j two of the three vertices {f0i , fTi , fT

′

i }, and thus in all the sets of Hk
j , either by having

claimed f0i or by having claimed fTi and fT
′

i .

• If ℓkj = ¬yi, by construction of the strategy, Waiter has considered that yi was put to ⊥ according to

the choice of Client, which corresponds to the case where Client has not chosen fFi , therefore Waiter
has claimed it, and thus has claimed in Hk

j .

Finally, Client has not filled up the hyperedges in Hj for any 1 ≤ j ≤ m, and Waiter has won.

2.2.5 Client’s winning strategy

We prove now that if Falsifier has a winning strategy in φ, then Client has a winning strategy in H.

Lemma 2.17. If Falsifier has a winning strategy in φ, then Client has a winning strategy in H.

Proof. Suppose now that Falsifier has a winning strategy S in φ. We provide a strategy for Client. Note
that as the hypergraph can be decomposed into blocks or order 4, once the first pair of a block is proposed,
Client knows that the second pair will be proposed at some point, and therefore can consider a strategy
knowing the two pairs.

First, notice that, as H is a block-hypergraph, we can suppose that Waiter always propose vertices in
blocks, according to Corollary 2.15.

Let 1 ≤ i ≤ n be an integer, and suppose that Waiter proposes pairs in a block Si or Fi. Client considers
that Satisfier has chosen the pair i in S and answers as follows:

• If Waiter proposes two vertices in Si, as Client knows that Waiter will have to propose the second pair
of Si at some point (as H is a block-hypergraph), he can always consider the two pairs of Si. Among
them, he can ensure to claim s0i and one of sTi and sFi . If he has claimed sFi , he considers that Satisfier
has put xi to ⊤ and if he has claimed sTi , he considers that it has been put to ⊥.

– Now, if S puts yi to ⊥, as Client knows that he will have s0i and sFi (resp. sTi), Waiter is forced

to propose (f0i , f
T
i) (resp. (f0i , f

T ′

i)) as they are the only remaining vertices of a hyperedge of P .

Thus, Client can take f0i and by the block strategy of Waiter, he will be able to take fT
′

i (resp.
fTi) after the next move if Fi.

– If S puts yi to ⊤, the same happens, and he can claim fFi and any other vertex.

• if Waiter proposes two vertices of Fi, as Fi is a block of four vertices, Waiter has only three possible
ways to pair them.

– If the pairs are (f0i , f
T
i) and (fFi , f

T ′

i), Client assume that xi was put to ⊥ in S. If he has to

put yi to ⊥, he will claim f0i and fT
′

i , forcing Waiter to propose the pair (s0i , s
F
i) in order not to

lose because of the hyperedge (f0i , s
0
i , f

T ′

i , sFi). If he has to put yi to ⊤, he will claim fTi and fFi ,
forcing Waiter to propose (s0i , s

F
i) in order not to lose because of the hyperedge (s0i , f

F
i , f

T
i , s

F
i)

and everything continues as if (s0i , s
F
i) has been proposed before.

55

– If the pairs are (f0i , f
T ′

i) and (fFi , f
T
i), Client assume that xi was put to ⊤ in S. If he has to

put yi to ⊥, he will claim f0i and fTi , forcing Waiter to propose the pair (s0i , s
T
i) in order not to

lose because of the hyperedge (f0i , s
0
i , f

T
i , s

T
i). If he has to put yi to ⊤, he will claim fT

′

i and fFi ,

forcing Waiter to propose (s0i , s
T
i) in order not to lose because of the hyperedge (s0i , f

F
i , s

T
i , f

T ′

i)
and everything continues as if (s0i , s

T
i) has been proposed before.

– If the pairs are (f0i , f
F
i) and (fTi , f

T ′

i), if for any valuation of xi, S puts yi to ⊥, Client takes f0i
and fTi and will take s0i and one of sTi or sFi . Otherwise, if for xi = ⊤ (resp. xi = ⊥), Falsifier
would put yi to ⊤, Client takes fFi and fT

′

i (resp. fTi) forcing Waiter to propose the pair (s0i , s
T
i)

(resp. (s0i , s
F
i)) because of the hyperedge (s0i , f

F
i , s

T
i , f

T ′

i) (resp. (s0i , f
F
i , f

T
i , s

F
i)) in both cases,

the variables are assigned as if Satisfier has chosen before Falsifier in S.

Following this strategy until the end, the underlying valuation of the vertices is the one obtained by S
in φ. By hypothesis, there exists a clause Cj ∈ φ in which all the literals are set to ⊥. Let ℓkj for 1 ≤ k ≤ 3
be one of these literals.

• If ℓkj = xi, i.e. xi = ⊥, by hypothesis, Client has claimed s0i and sTi .

• If ℓkj = ¬xi, i.e. xi = ⊤, by hypothesis, Client has claimed s0i and sFi .

• If ℓkj = yi, i.e. yi = ⊥, by hypothesis, Client has claimed f0i and one of fTi or fT
′

i .

• If ℓkj = ¬yi, i.e. yi = ⊤, by hypothesis, Client has claimed fFi .

Thus, in any case, Client has claimed all the vertices of a set in Hk
j , and therefore wins by filling up a

hyperedge in Hj .

2.2.6 Conclusion

We can now conclude the proof of Theorem 2.10.

Proof of Theorem 2.10. First, we recall that, according to Theorem 1.61, Client-Waiter games are in PSPACE.
We prove the hardness by reduction from Paired SAT.

Let (φ,X) be an instance of Paired SAT. Consider the hypergraphH obtained from the reduction provided
in Subsection 2.2.3. It has O(|X|) vertices of O(|X| + |φ|) hyperedges, so it is polynomial. According to
Lemma 2.16 and Lemma 2.17, we have that Satisfier wins in (φ,X) if and only if Waiter wins inH. Therefore,
determining the winner of a Client-Waiter game is PSPACE-complete.

Moreover, as any hyperedge of H has size at most 6, the problem is still PSPACE-complete restricted to
hypergraphs of rank 6.

As it was done by Rahman and Watson for Maker-Breaker games [RW21], or by Gledel and myself for
Avoider-Enforcer games [GO23], a next step of the study would be to transform the hypergraph into a
uniform one, to get a stronger result. We achieved this with the following lemma:

Lemma 2.18. Let H = (X ,F) be a hypergraph of rank k. Let m = min
e∈E
|e|. If m < k, there exists a

hypergraph H′ = (X ′,F ′) of rank k where min
e∈E
|e| = m+1, having |F ′| ≤ |F|+

(
2(k−1)

k

)
and |X ′| ≤ |X |+2(k−1)

such that Client has a winning strategy in the Client-Waiter game on H if and only if he has one in H′.

Proof. Let H = (X ,F) be a hypergraph of rank k. We construct the hypergraph H′ = (X ′,F ′). Let
A = {a1, . . . , a2(k−1)} be 2(k − 1) new vertices, and set X ′ = X ∪ A. We make A a block, i.e. we define
the set U = {B ⊂ A | |B| = k} of hyperedges. Finally, we introduce L = {e ∪ {a1} | e ∈ F and |e| = m}.
Finally, we define our hyperedges as follows:

F ′ = {e ∈ F | |e| ≥ m+ 1} ∪ L ∪ U

56

The construction is depicted in Figure 2.4.
We have that Client wins in H if and only if he wins in H′. Indeed, suppose that Client wins in H, as A

is a block, Waiter will have to propose the vertices of A two by two. Therefore, Client can claim a1 when it
will be proposed and apply his strategy on H. Then, if Client had filled up a hyperedge e ∈ F , if |e| = m, he
has filled up e∪{a1} in H′, and if |e| ≥ m+1, he has filled up e in H′. Reciprocally, if Waiter has a winning
strategy in H, by proposing the same pairs in H′ and the vertices of A two by two, for any hyperedge e ∈ F ′,
either e ∈WS or e\{a1} ∈ F , in both cases, Waiter has claimed a vertex of it by her winning strategy in H.
Otherwise, e ∈ U , in this case, she has not lost of e as Client has claimed k− 1 vertices of A and |e| = k.

a1

a2

a3

a4

Figure 2.4: The construction of Lemma 2.18 with k = 3 and m = 2. The dashed set is a block and contains
the four hyperedges of size 3. The resulting hypergraph is 3-uniform.

Corollary 2.19. Client-Waiter games are PSPACE-complete even restricted to 6-uniform hypergraphs.

Proof. The hypergraph obtained in the proof of Theorem 2.10 has rank 6 and all its hyperedges have size
at least two. Therefore, by applying four times Lemma 2.18, with m = 2, 3, 4, 5, we obtain a hypergraph
having at most 4∗10 more vertices and 4∗

(
10
6

)
= 840 more edges. Thus this construction is still polynomial,

and the hypergraph obtained is 6-uniform.

2.3 Applications

Most of the proofs that Maker-Breaker games on graphs are PSPACE-complete are reductions from 6-uniform
POS CNF, i.e. the general Maker-Breaker game. Therefore, the proofs that Avoider-Enforcer and Client-
Waiter games are PSPACE-complete makes it possible to reduce these games to other Avoider-Enforcer or
Client-Waiter games on graphs. In the next section, we illustrate the power of these theorems by proving
that two other conventions of the domination game are PSPACE-complete.

The Maker-Breaker domination game has been introduced in 2020 by Duchêne et al. [DGPR20] and was
proved PSPACE-complete by reduction from the general 6-uniform Maker-Breaker game. We prove here that,
thanks to the PSPACE-completeness of Avoider-Enforcer and Client-Waiter games, the domination game is
also PSPACE-complete under Avoider-Enforcer and Waiter-Client conventions. We provide a construction
for the two conventions similar to the one provided by Duchêne et al., and prove that the domination game
is still PSPACE-complete restricted to split graphs under Avoider-Enforcer and Waiter-Client conventions.

2.3.1 The construction of the graph

Let H = (X ,F) be a hypergraph. The construction provided is similar to the one provided by Duchêne
et al. [DGPR20] in the Maker-Breaker convention. We construct the following graph G = (V,E) as follows:

57

• For each vertex ui in X , we add a vertex vi in V . Denote by K the set of vertices created during this
step.

• For each hyperedge C in F , we add p new vertices v1C , . . . , v
p
C in V . Denote by S the set of vertices

created during this step. The value of p will be provided depending on the convention.

• For each pair of vertices ui, uj ∈ X , we add an edge between vi and vj in E.

• If a vertex ui of X belongs to a hyperedge C of F , we add the edges (vi, v
1
C), . . . , (vi, v

p
C) to E.

Note that K is a clique and S a stable set. Therefore, G is a split graph.
The graph obtained is depicted in Figure 2.5 for p = 2. The next two sections will consist in the proofs that

the reduction provided attests that the Avoider-Enforcer domination game and the Waiter-Client domination
games are PSPACE-complete.

v1 v2 v3 v4

v1A v2A v1B v2B v1C v2C

u1

u2 u3

u4

A
C

B

Figure 2.5: Reduction from a hypergraph to a graph in the Domination game.

2.3.2 Avoider-Enforcer domination game

We recall that, in the Avoider-Enforcer domination game, Avoider loses if the vertices she claims a dominating
set of the graph. Otherwise, Enforcer loses. In order to differentiate the players of the Avoider-Enforcer
game on H and the players of the Avoider-Enforcer domination game, we will call Eric, the player who wants
not to dominate the graph and Aline his opponent.

Theorem 2.20. The Avoider-Enforcer domination game is PSPACE-complete, even restricted to split graphs.

Proof. First, the Avoider-Enforcer domination game is in PSPACE, as the number of moves in the game is
the number of vertices, and as determining if a set is a dominating set or not can be done in polynomial
time, the game is in PSPACE.

Let H = (X ,F) be a hypergraph and G = (V,E) be the graph constructed in Section 2.3.1 with p = 2.
Suppose Avoider (resp. Enforcer) has a winning strategy S in H. We define a strategy S ′ for Aline (resp.

Eric) in G as follows.

• If Avoider (resp. Enforcer) plays the first move in H, Aline (resp. Eric) claims first a vertex vi such
that ui is the first vertex claimed in S.

• If the opponent claims a vertex vi, she (resp. he) claims a vertex vj such that uj is the answer to the
vertex ui in S.

• If a player plays a vertex vkC for k ∈ {1, 2}, she (resp. he) claims the vertex vk
′

C for k′ ̸= k ∈ {1, 2}.

58

Now if Avoider had a winning strategy in H, by applying the strategy S ′, for any vertex viC , Aline has
not played all the vjs adjacent to it. Therefore, Eric has claimed one of them and all the viCs are dominated.
Moreover, all the vertex ujs are forming a clique, and therefore dominated by Eric, as he has played at least
once in K. Finally, Eric has dominated the graph and Aline has won.

Reciprocally, if Enforcer had a winning strategy in H, by applying the strategy S ′, Eric knows that there
exists a pair of vertices (v1C , v

2
C), such that Aline has played all the vjs adjacent to them. As Aline has played

one of them, and all its neighbors, this vertex is not dominated. Therefore, Eric has won.

2.3.3 Waiter-Client domination game

The graph G considered for the Waiter-Client domination game is the one constructed in Subsection 2.3.1
with p = 2(n+m), where n = |VH | and m = |EH |. We recall that, in the Waiter-Client Domination game,
Waiter aims to claim a Dominating set, while Client aims to claim a vertex and all its neighbors, preventing
Waiter to dominate. In order to differentiate the players of the Client-Waiter game on H and the players
of the Waiter-Client domination game, we will call Dominator, the player who wants to fill up a hyperedge
(Waiter), and Staller her opponent (Client). Note that we consider here the Waiter-Client convention and
not the Client-Waiter one as we consider the neighborhood of the vertices as hyperedges rather than the
dominating sets.

Theorem 2.21. The Waiter-Client domination game is PSPACE-complete, even restricted to split graphs,
when Waiter aims to dominate the graph.

Proof. Suppose that Waiter has a winning strategy S in the Client-Waiter game on H. We provide the
following strategy for Dominator on G:

• For each winning set e ∈ EH , she proposes the vertices v1e , . . . , v
2(n+m)
e two by two.

• Now if S wants to propose a pair of vertices (ui, uj) in H, she proposes the pair (vi, vj) in G.

Following this strategy, as S was a winning strategy in H, for any hyperedge e ∈ EH , there exists a
vertex ui claimed by Waiter. Therefore, Waiter has also claimed vi in G. Thus, Dominator dominates all

the vertices v1e , . . . , v
2(n+m)
e . As the vis make a clique, she also dominates the vis as she has claimed at least

one of them. Therefore, Dominator wins.
Conversely, suppose that Client has a winning strategy S in the Client-Waiter game on H. We provide

the following strategy for Staller on G:

• If Dominator proposes a pair (vi, vj) corresponding to a pair (ui, uj) in H, Staller chooses the vertex
corresponding to the one taken by S in H, ignoring the possible other vertices vi he has claimed.

• If Dominator proposes a pair containing exactly one vertex vi corresponding to a vertex ui in H, Staller
takes ui.

• If Dominator proposes a pair of two vertices (vie, v
j
f), if Staller has currently claimed no vertex vke for

1 ≤ k ≤ 2(n+m), he claims vie, otherwise, he claims vjf .

Following this strategy until all the vertices are claimed, if a vertex ui would be claimed according to
S by Client in H, vi will also be claimed by Staller in G. Moreover, as there are 2(n +m) copies of each
clause vertex, Client with the third point of the strategy ensure to take at least one copy of each. Therefore,
if e ∈ EH is a hyperedge that was filled up by Client, consider a vertex vke claimed by Staller in G, all its
neighbor will also be claimed by Staller, and therefore, Staller wins.

Note that even if we proved that the Waiter-Client domination game is PSPACE-complete, this does
not prove that general Waiter-Client games are PSPACE-complete as a graph generally has an exponential
number of dominating sets. Therefore, the reduction to the hypergraph corresponding to the domination
game is not a polynomial reduction.

59

2.4 Further work

In this chapter, we proved that determining the winner in a 6-uniform Avoider-Enforcer game or Client-
Waiter game is a PSPACE-complete problem. The two natural questions concern the optimality of the 6 and
the other conventions.

In the reduction provided in the Avoider-Enforcer convention, most hyperedges were of size at most 4.
In fact, only the clause hyperedges could be of order 6. Therefore, we can expect a better bound by reducing
the size of this gadget.

On the other side, in contrast to Maker-Maker games, where rank 2 hypergraphs are in P, in Avoider-
Avoider games, it is already PSPACE-complete to determine the winner in a 2-uniform hypergraph [BH19].
Moreover, the main argument in the proof that 3-uniform Maker-Breaker games are in P is the fact that
Maker can build a simple structure on which she will win with her first moves. This phenomenon cannot
occur in Avoider-Enforcer, isolated vertices are played first and not last, without giving any information
about the outcome of the game. More generally, in Avoider-Enforcer games, it is the last moves that matter,
and not the first moves. This makes the first moves approach difficult to apply. Therefore, the computational
complexity of rank 3 Avoider-Enforcer games can be a good problem to look at.

However, in Client-Waiter games, 3-uniform hypergraphs seem to be easier to handle. After the first
claim of Client, some hyperedges have only two vertices unclaimed. Thus, according to Lemma 1.79, Waiter
can propose these two vertices in an optimal strategy. It follows that many moves can be forced which makes
the problem unlikely to be PSPACE-hard. Therefore, we make the following conjecture:

Conjecture 2.22. Determining the winner of a Client-Waiter game on a hypergraph of rank 3 is in P.1

The last convention for which no hardness result is known is the Waiter-Client convention. However,
the proof of Theorem 1.70 seems to be adaptable to larger ranks, up to considering more moves for Waiter.
Indeed, if H is k-uniform and has 2k disjoint hyperedges, Waiter can easily win by a dichotomy strategy.
Therefore, the hypergraphs to be considered for a reduction must have a minimum transversal of bounded
size, which makes the game unlikely to be PSPACE-hard. Therefore, this convention seems to be very different
from the others, and we make the following conjecture:

Conjecture 2.23. Let k be an integer. Determining the winner of a Waiter-Client game restricted to
hypergraphs of rank k is in P.2

1After the redaction of the manuscript, we proved in [GOTT] that it is in ∆P
2 , but the conjecture is still open.

2After the redaction of the manuscript, in [GOTT], we proved this conjecture, and more precisely that that Waiter-Client
games are FPT parameterized by the rank of the hypergraph

60

Chapter 3

Maker-Breaker games on edges

A classic.

In Chapter 1, we saw that the study of the complexity of Maker-Breaker games on graphs is a trendy
ongoing work. However, even if most of the games studied on complete graphs are played on the edges of
graphs, most of the recent work on the complexity of games considers games played on the vertices, and
only few of them are known to be PSPACE-complete. We initiate here the study of the complexity of the
most classical Maker-Breaker games played on the edge set of graphs. Since the connectivity game is already
known to be in P by Lehman [Leh64], we present here results for two of the other most studied games:
the H-game and the perfect matching game. In the case of the H-game, Galliot et al. [Gal23] proved that
3-uniform Maker-Breaker games can be solved in polynomial time. Therefore, if H has three edges, the
winner of the H-game can be computed thanks to their algorithm. However, for general graphs, there are
no known result, and we provide here the first proofs of PSPACE-completeness of positional games played
on the edges of graphs.

Instead of stating the results game by game, we will organize them according to the nature of the
complexity of the study, i.e. PSPACE-hard, polynomial or FPT, as the proof of the PSPACE-hardness between
the two games have similarities. In Section 3.1, we prove that both the H-game and the perfect matching
game are PSPACE-complete. Then in Section 3.2, we provide some positive results on some particular
instances of the H-game, in particular we prove that if H is a star and G a tree, the winner can be computed
in polynomial time. Finally, in Section 3.3, we generalize the latest result by considering either that G can
be a general graph, or that H can be a tree.

This work was a collaboration with Eric Duchêne, Valentin Gledel, Fionn Mc Inerney, Nicolas Nisse,
Aline Parreau and Miloš Stojaković [DGI+23].

3.1 PSPACE-completeness results

In this section, we prove that it is PSPACE-complete to decide who wins the perfect matching game and
the H-game via reductions from POS CNF. Note that in [RW21], it is also proven that POS CNF remains
PSPACE-complete if Falsifier goes first and/or the number of variables n is odd. This property will be used
in our reductions.

3.1.1 PSPACE-completeness of the perfect-matching game

We first prove that it is PSPACE-complete to determine the outcome of the perfect matching game. To
simplify the reduction, the proof is done allowing parallel edges, that the following lemma enables to remove,
see Figure 3.1.

61

Lemma 3.1. Let G be any graph containing two parallel edges e1 and e2 connecting two of its vertices u and
v. Then, there exists a complete bipartite graph H, of bounded order, with bipartition (A,B) such that, if e1
and e2 are removed from G, and a copy of H is added instead, where u (v, respectively) is made adjacent to
two vertices of A (B, respectively), then the outcome of the perfect matching game in the resulting graph G′

is the same as that in G.

u v

u v

u1

u2

v1

v2

H

Figure 3.1: How parallel edges are removed in the perfect matching game in Lemma 3.1.

Proof. With the parallel edges e1 and e2 in G, according to the Super Lemma, we can suppose that Maker
claims e1 and Breaker claims e2 in the perfect matching game. That means that, playing in G, she has two
possibilities to claim a perfect matching:

(i) claim a perfect matching in G− {e1, e2}, or

(ii) claim a perfect matching in G \ {u, v}.

Let H be a balanced complete bipartite graph with parts A and B, and let u1, u2 ∈ A and v1, v2 ∈ B.
We will show that when |A| = |B| = k, for a suitable constant k to be chosen later, Maker, playing second,
has a strategy in H that satisfies the following five conditions:

• Maker has a perfect matching in H, and

• for every i, j ∈ {1, 2}, Maker has a perfect matching in H \ {ui, vj}.

Once this is shown, forming G′ by replacing the parallel edges e1 and e2 in G by H, and adding the two
pairs of edges connecting u to u1 and u2, and v to v1 and v2, as depicted in Figure 3.1, finishes the proof.
Indeed, assume Maker, playing second, has a strategy in H to satisfy the above-mentioned five conditions,
and, on top of that, in G′, she pairs uu1 with uu2, and vv1 with vv2. Then, she can claim a perfect matching
in G′ if and only if she can satisfy (i) or (ii) in G, which corresponds to her being able to claim a perfect
matching in G.

To show that Maker can satisfy the five conditions playing second in H, we define an auxiliary positional
game in H. Let

FH := {E(X,Y) | X ⊆ A, Y ⊆ B, |X|+ |Y | = k + 1} ,

and, for every i, j ∈ {1, 2}, let

Fi,j := {E(X,Y) | X ⊆ A \ {ui}, Y ⊆ B \ {vj}, |X|+ |Y | = k} .

In the auxiliary game, Maker will assume the role of Breaker (to avoid confusion, we will call this player
Auxiliary Breaker), trying to claim one edge in every winning set in F := FH∪

(
∪i,j∈{1,2}Fi,j

)
. If she achieves

62

that, then Hall’s condition [Hal35] for the existence of a perfect matching in a bipartite graph implies that
Maker will have a claimed perfect matching in H, as well as in H \ {ui, vj}, for every i, j ∈ {1, 2}.

To show that Auxiliary Breaker can win the auxiliary game in H, we apply the Erdős-Selfridge Criterion
(see Theorem 1.25):

∑
E′∈F

2−|X| ≤
k∑

ℓ=1

(
k

ℓ

)(
k

k − ℓ+ 1

)
2−ℓ(k−ℓ+1) + 4

k−1∑
ℓ=1

(
k − 1

ℓ

)(
k − 1

k − ℓ

)
2−ℓ(k−ℓ)

≤
k∑

ℓ=1

(
k

ℓ

)(
k

k − ℓ+ 1

)
2−ℓ(k−ℓ) + 4

k∑
ℓ=1

(
k

ℓ

)(
k

k − ℓ

)
2−ℓ(k−ℓ)

=

k∑
ℓ=1

(
k

ℓ

)(
k

ℓ− 1

)
2−ℓ(k−ℓ) + 4

k∑
ℓ=1

(
k

ℓ

)2

2−ℓ(k−ℓ)

≤ 2

⌈k/2⌉∑
ℓ=1

(
k

ℓ

)2

2−ℓ(k−ℓ) + 8

⌈k/2⌉∑
ℓ=1

(
k

ℓ

)2

2−ℓ(k−ℓ)

≤ 10

⌈k/2⌉∑
ℓ=1

k2ℓ2−ℓ(k−ℓ)

≤ 10

⌈k/2⌉∑
ℓ=1

k2ℓ2−ℓ(k−⌈k/2⌉)

= 10

⌈k/2⌉∑
ℓ=1

(
22 log2 k−⌊k/2⌋

)ℓ
.

This expression tends to zero when k grows, and hence, for k large enough, it is less than 1/2, and so,
the Erdős-Selfridge criterion implies Auxiliary Breaker’s win.

Theorem 3.2. Deciding whether Maker wins the perfect matching game in a given graph G is PSPACE-
complete.

Proof. The problem is clearly in PSPACE since both the number of turns and the number of possible moves
at each turn are bounded from above by n2, and determining whether a set of edges contains a perfect
matching or not can be done in polynomial space. To prove it is PSPACE-hard, we give a reduction from
POS CNF where there are an odd number of variables, which, as mentioned before, is PSPACE-hard [RW21].

Let ϕ be an instance of POS CNF where there are an odd number of variables. Denote the variables in
ϕ by x1, . . . , x2n+1, and the clauses in ϕ by C1, . . . , Cm. From ϕ, we construct the graph G as follows, and
recall that, by Lemma 3.1, we can allow pairs of parallel edges.

• For all 1 ≤ i ≤ 2n+ 1, introduce two vertices vii0 and vii0 , and the edge ei = vii0v
i
i0 .

• Then, add n new vertices a1, . . . , an, and, for all 1 ≤ i ≤ 2n+ 1 and 1 ≤ ℓ ≤ n, add two parallel edges
between vii0 and aℓ. See Figure 3.2 for an illustration.

• For each clause Cj in ϕ, add a vertex Cj in G.

• For each variable xi in ϕ, let Ci1 , . . . , Ciki
be the clauses containing xi in ϕ. For all 1 ≤ i ≤ 2n + 1

and for all 1 ≤ j ≤ ki, add the vertices uiij , u
i
ij , v

i
ij
, viij , x

i
ij
, and yiij . Also, for all 1 ≤ i ≤ 2n + 1,

add the vertices yiiki
+1. Then, connect them as follows for all 1 ≤ i ≤ 2n + 1 and 1 ≤ j ≤ ki (see

Figures 3.3 and 3.4):

– Add the two edges viij−1
uiij and viij−1

uiij .

63

– Add two parallel edges between uiij and xiij .

– Add two parallel edges between xiij and Cij .

– Add two parallel edges between xiij and yiij .

– Add two parallel edges between uiij and uiij .

– Add two parallel edges between uiij and viij .

– Add two parallel edges between viij and viij .

Also, for all 1 ≤ i ≤ 2n+ 1, add two parallel edges between viiki
and yiiki

+1.

• If |V (G)| is currently an odd number, then add the vertex y000 in G.

• For each pair of vertices among the yiij ’s (including y000 if it exists), add two parallel edges between

them (see Figure 3.5).

...

v110

an

a2

a1

v110

v220 v220

v2n+1
(2n+1)0

v2n+1
(2n+1)0

...

Figure 3.2: The variable gadget in the graph G constructed in the proof of Theorem 3.2.

vii0 vii0 ui
i1

ui
i1

xi
i1

vii1 vii1 . . .
viiki−1

viiki−1
ui
iki

ui
iki

xi
iki

viiki
viiki

Ci1

Ciki

yiiki
+1

yii1

yiiki

Figure 3.3: Construction for a variable xi in clauses Ci1 , . . . , Ciki in ϕ in the graph G constructed in the
proof of Theorem 3.2.

Note that G is clearly constructed in polynomial time. We prove that Satisfier wins in ϕ if and only if
Maker wins the perfect matching game in G. By the Super Lemma, the outcome of the perfect matching
game in G is the same as the outcome in G, where, for each pair of parallel edges, both Maker and Breaker
have claimed one of the two edges, and so, we can assume they have done so in what follows.

We first give the idea above this construction:

• The vertices ai will be matched to n of the vii0 , so Maker will have to play the n+1 other edges adjacent
to the vii0s in her first n+ 1 moves, otherwise she loses by not matching one of them.

64

...
xi6
j

xi2
j

xi1
j

Cj

Figure 3.4: Construction for a clause Cj = (xi1 ∨ · · · ∨ xi6) in ϕ in the graph G constructed in the proof of
Theorem 3.2.

. . .

v11k1

xi
ij

viiki
x1
11

x1
12

y11k1
+1

yiij

yiiki
+1

y111

y112

Figure 3.5: The yiij vertices in the graph G constructed in the proof of Theorem 3.2.

• The gadget going from vii0 to viiki
is made so that if Maker has played (vii0 , v

i
i0
), she can take in

her matching the edges (uii1 , u
i
i1
), . . . , (uiiki

, uiiki
) and the edges (vii0 , v

i
i0
), . . . , (viiki

, viiki
), letting the

vertices xii1 , . . . , x
i
iki

available to match the clauses. If she has not claimed (vii0 , v
i
i0
), Breaker can force

her moves to have the vertex xiik of his choice matched with the vertex uiik , and therefore not matching
some clause vertex.

• All the vertices yij are used to match the vertices remaining of the previous gadget, so that Maker does

not lose outside of a clause. In particular, they will be matched with the vertices xij that are in clauses
which is already matched with an other variable in it.

First, we prove the simpler of the two directions, that is, if Falsifier wins in ϕ, then Breaker wins the
perfect matching game in G. Assume that Falsifier has a winning strategy S in ϕ. Consider the following
strategy for Breaker in G:

• If Maker claims an edge ei = vii0v
i
i0 , then Breaker answers by claiming an edge ej = vjj0v

j
j0
, where xj is

the variable that would have been claimed by Falsifier in ϕ according to S if Satisfier claimed xi in ϕ.

• If Maker claims any edge other than an ei before all the ei’s have been claimed, then Breaker claims
an arbitrary ei. Then, as there is an odd number of ei’s, by pairing them, Breaker can ensure claiming
at least n + 1 of them. Thus, by construction, Maker will not be able to have a perfect matching
containing all the vii0 ’s. Indeed, after this step, at least n + 1 of the ei’s are claimed by Breaker, and
so, their respective n+1 vii0 ’s must be matched with their only remaining neighbors, the aℓ’s, of which
there are only n, and thus, this is not possible.

65

Hence, we can assume that all the edges ei have been claimed during the first 2n+1 moves. Consider the
valuation obtained in ϕ if all the xi variables associated to the ei edges claimed by Maker are the variables
set to true, and all the xi variables associated to the ei edges claimed by Breaker are the variables set to
false. By the hypothesis that S is a winning strategy for Falsifier in ϕ, there exists a clause Cz that is not
satisfied by this valuation in ϕ. Let xf1 , . . . , xf6 be the variables in Cz in ϕ. Since Breaker claimed all the
edges ei corresponding to the variables xi in ϕ that Falsifier would have claimed according to S, the edges
ef1 , . . . , ef6 are claimed by Breaker in G. Recall that, as the number of variables is odd, it is Breaker’s turn.
Breaker plays as follows for all ℓ ∈ {f1, . . . , f6} and for j = 1 to kℓ while ℓj ≤ z:

• If ℓj < z, then Breaker claims vℓℓj−1
uℓℓj . As the only remaining edge available to match vℓℓj−1

is vℓℓj−1
uℓℓj ,

Maker has to claim it. Now, all the edges adjacent to uℓℓj have been claimed, and Maker has claimed
only two of them, of which only one does not interfere with the edges already forced in the matching:
uℓℓjv

ℓ
ℓj
. Thus, uℓℓjv

ℓ
ℓj

has to be in any perfect matching claimed by Maker, which forces the edge vℓℓjv
ℓ
ℓj

claimed by Maker to not be in the matching.

• If ℓj = z, then Breaker claims vℓℓj−1u
ℓ
z, forcing Maker to claim vℓℓj−1u

ℓ
z to match vℓℓj−1. Now, the only

edge that Maker can use to match uℓz is the edge uℓzx
ℓ
z.

By the above strategy for Breaker, any perfect matching contained in the edges claimed by Maker has
to contain the edges uℓzx

ℓ
z for all ℓ ∈ {f1, . . . , f6}. Therefore, all the vertices adjacent to Cz are already

matched, and thus, it cannot be matched, and Breaker wins.
Now, we prove that if Satisfier wins in ϕ, then Maker wins the perfect matching game in G. Assume that

Satisfier has a winning strategy S in ϕ. We construct a strategy for Maker in G as follows:
First, Maker claims the edge ei = vii0v

i
i0 corresponding to the variable xi that Satisfier would have claimed

first in ϕ according to S. Then,

• If Breaker claims an edge ej = vjj0v
j
j0
, then Maker claims the edge ei = vii0v

i
i0 corresponding to the

variable xi that Satisfier would have claimed according to S if Falsifier had claimed xj in ϕ.

• For any variable xi in a clause Cj in ϕ, Maker pairs the edges viij−1
uiij and viij−1

uiij in G, and so, if
Breaker claims one of them, she claims the other one.

Note that by construction, one of these moves is always available, as after the first move of Maker, any
set where moves are considered has an even number of unclaimed edges remaining.

Suppose that Maker employs this strategy until the end of the game. Then, she will have claimed the
ei edges corresponding to the xi variables claimed by Satisfier in ϕ according to S. We extract a perfect
matching from the edges she claimed as follows:

• Add in the matching, the n + 1 ei’s claimed by Maker. The n vii0 ’s that are not in these edges are
paired with the n aℓ’s.

• Let i1, . . . , in+1 be the indices of the ei edges claimed by Maker. For ℓ = i1 to in+1, add in the matching
all the edges uℓju

ℓ
j and vℓjv

ℓ
j such that xℓ is in Cj in ϕ.

• For each clause Cj , as at least one variable xi in Cj in ϕ corresponding to an edge xi claimed by Maker
is set to true, consider such an i, and add the edge xijC

j in the matching. For each other variable xℓ
in Cj in ϕ corresponding to an edge xℓ claimed by Maker (ℓ ̸= i), add the edge xℓjy

ℓ
j in the matching.

• For each variable xi with i /∈ {i1, . . . , in+1} being in clauses Ci1 , . . . , Ciki
in ϕ:

– For j = 1 to ki, while Maker has claimed viij−1
uiij , add in the matching the edges, viij−1

uiij , x
i
ij
yiij ,

and uiijv
i
ij
. If and once Maker has claimed an edge viiz−1

uiiz , add in the matching viiz−1
uiiz , u

i
iz
xiiz ,

and viizv
i
iz , and exit the for loop. Then, for j = z+1 to ki, add in the matching the edges uiiju

i
ij ,

xiijy
i
ij
, and viijv

i
ij .

66

– If Maker has claimed no edge viiz−1
uiiz at the end, add in the matching viiki

yiiki
+1.

• Note that this strategy matches all the vertices except some of the yiij ’s (including y000 if it exists).
As G contains an even number of vertices, and every pair of remaining vertices is connected by two
parallel edges, by considering any matching among the remaining yiij ’s, Maker has claimed a perfect
matching and wins.

Usually, after a game has been proved to be PSPACE-hard, we study the complexity of that game on
simpler classes of graphs. However, in the case of the perfect matching game, it is quite difficult to focus on
standard classes of graphs on which there are no direct results. In fact, in order to win the perfect matching
game, the board must contain several perfect matchings, otherwise simple arguments can prove that Breaker
wins. For instance, if G has two leaves, Breaker can always play an edge that disconnects one leaf from the
rest of the graph and prevents Maker from claiming a perfect matching, which proves that trees with at least
three vertices have outcome B. More precisely, the following result holds:

Lemma 3.3. Let G = (V,E) be a graph with |V | = 2n. If the number of perfect matchings of G is less than
2n−1, Breaker wins the perfect matching game on G.

Proof. This result is straightforward using the Erdős-Selfridge criterion of Theorem 1.25. Indeed, as any
perfect matching contains n edges, the criterion states that if:∑

M⊂E
M perfect matching

2−|M | =
|{M ⊂ E |M perfect matching}|

2n
<

1

2

Breaker wins.

As a direct application of this Lemma, if G is a large enough grid, according to the bound on the number
of perfect matchings provided by Benhmaram and Friedland [BF12], Breaker wins:

Theorem 3.4. Let G2n,m be the grid with 2n rows and m columns. If 2n+m ≥ 4, Breaker wins the perfect
matching game on G2n,m.

Note that the result is stated with 2n rows, as we need at least n or m even to have at least one perfect
matching.

Proof. Denote by pm(G) the number of perfect matchings of a graph G.
According to Behmaram and Friedland [BF12], a grid of size 2n ∗m satisfies:

pm(G2n,m) = Π
v∈G2n,m

d(v)
1
4 = 4

(2n−2)(m−2)
4 3

2(2n−2+m−2)
4 2

4
4 = 2nm−2n−m+3

√
3
2n+m−4

This value has to be compared to the bound of Lemma 3.3, i.e. 2nm−1 as G2n,m has 2nm vertices.
Therefore, the Erdős-Selfridge criterion can be applied if and only if

2nm−1

2nm−2n−m+3
√
3
2n+m−4 > 1

⇐⇒ 22n+m−4

√
3
2n+m−4 > 1

⇐⇒
(

2√
3

)2n+m−4

> 1

⇐⇒ 2n+m > 4

To conclude the proof it remains to see that Maker wins the perfect matching game on the grid G2,1 and
that Breaker wins on the grid G2,2. Any other grid of even order satisfies 2n+m ≥ 5 vertices.

67

3.1.2 PSPACE-completeness of the H-game

We now prove that the H-game is PSPACE-complete in graphs of small diameter when H is a tree. Hence,
even when H is a relatively basic graph, determining the outcome of the H-game is hard. In Section 3.3, we
will prove that by being a bit more restrictive on the instance, we will be able to obtain FPT-results.

Theorem 3.5. There exists a tree H such that deciding whether Maker wins the H-game in a given graph
G is PSPACE-complete, even if G has diameter at most 6.

Proof. We show that the statement holds for the tree H in Figure 3.6.

6

...

7

...

6

...

7

...

6

...

7

...

6

...

Figure 3.6: The tree H in the proof of Theorem 3.5.

The problem is clearly in PSPACE since both the number of turns and the number of possible moves at
each turn are bounded from above by n2 [Sch78, Lemma 2.2]. To prove it is PSPACE-hard, we give a reduction
from POS CNF where Falsifier plays first, which as mentioned before, is known to be PSPACE-hard [RW21].

12
C1

x1 x2 xn

...

...

...

12
C2

12
Cm

...

...

14 14 14 14 14 14

...

u

x1
1 x2

1 x1
2 x2

2 x1
n x2

n

Figure 3.7: The graph G constructed in the proof of Theorem 3.5. In this example, the variable x1 appears
in the clauses C1 and C2, the variable x2 appears in the clause C2, and the variable xn appears in the clause
Cm.

Let ϕ be an instance of POS CNF in which Falsifier plays first. From ϕ, we construct the graph G as
follows. For each clause Cj in ϕ, introduce a new clause vertex Cj in G, and, for each variable xi in ϕ,
introduce a new variable edge xi = x1ix

2
i in G, all pairwise vertex-disjoint from each other. For all 1 ≤ i ≤ n

and 1 ≤ j ≤ m, if the variable xi is contained in the clause Cj in ϕ, then add the edges x1iCj and x2iCj in

68

G. For each 1 ≤ i ≤ n, add 28 vertices, and make 14 of them adjacent to x1i , and the other 14 adjacent to
x2i . Lastly, to ensure G has diameter at most 6, add a vertex u and, for all 1 ≤ j ≤ m, make it adjacent to
Cj . See Figure 3.7 for an illustration of G, and note that G is clearly constructed in polynomial time.

We prove that Satisfier wins in ϕ (recall that Falsifier plays first) if and only if Breaker wins the H-game
in G. First, we prove the following useful claims.

Claim 3.6. Suppose that, for all 1 ≤ i ≤ n and 1 ≤ j ≤ m such that the edges x1iCj and x2iCj exist, Breaker
claims at least one of x1iCj and x2iCj. In that case, if Maker is to claim a copy of H in G, then the unique
vertex of degree 6 in H must be a clause vertex in G.

Proof of the claim. Every other vertex in G either has degree 1 or cannot be adjacent to 6 vertices that have
at least 8 edges incident to each of them that Maker can claim, due to Breaker’s strategy. ⋄

Claim 3.7. Suppose that, for all 1 ≤ i ≤ n and 1 ≤ j ≤ m such that the edges x1iCj and x2iCj exist, Breaker
claims at least one of x1iCj and x2iCj. In that case, if Maker is to claim a copy of H in G, then each of the
pairs of adjacent degree-8 vertices in H must be the two vertices of a variable edge in G.

Proof of the claim. By Claim 3.6, the unique vertex of degree 6 in H is a clause vertex. Thus, the 6 vertices
of degree 8 adjacent to this vertex of degree 6 in H must each be a vertex of 6 different variable edges in
G. Indeed, u cannot be one of these vertices since all of u’s neighbors can have at most 7 incident edges
claimed by Maker due to Breaker’s strategy. Due to Breaker’s strategy, for each of these vertices of degree 8,
the only vertex adjacent to them that has at least 8 edges incident to it that Maker can claim, is the other
vertex in each of the same variable edges. ⋄

First, by the Super Lemma, we can suppose that the edges between any vertex xji and a leaf for 1 ≤ j ≤ 2
and 1 ≤ i ≤ n are equitably distributed among Maker and Breaker.

We prove that if Satisfier wins in ϕ, then Breaker wins the H-game in G. Assume that Satisfier wins in
ϕ. Breaker employs the following pairing strategy. If Maker claims a variable edge xi, then Breaker follows
his winning strategy as Satisfier in ϕ by claiming the variable edge in G corresponding to the variable he
wants to set to true in ϕ assuming that Maker just set the variable xi to false in ϕ. If Maker claims an edge
x1iCj (resp. x2iCj), then Breaker claims x2jCj (resp. x1jCj). Lastly, if Maker claims an edge incident to u,
then Breaker claims another edge incident to u. Whenever Breaker cannot employ his strategy, he claims
an arbitrary edge, and then goes back to following his strategy. For a contradiction, assume that, at the
end of the game, Maker claimed a copy of H. Then, by Claims 3.6 and 3.7, there exists a clause such that
all of the variable edges corresponding to the variables it contains in ϕ have been claimed by Maker. This
contradicts the fact that Satisfier wins in ϕ since Breaker followed Satisfier’s winning strategy in ϕ on the
variable edges of G.

Now, we prove that if Falsifier wins in ϕ, then Maker wins the H-game in G. Assume that Falsifier wins
in ϕ. Maker first claims a variable edge in G that corresponds to the variable she wants to set to false in
ϕ according to her winning strategy as Falsifier in ϕ. Then, Maker employs the following pairing strategy.
If Breaker claims a variable edge xi, then Maker follows her winning strategy as Falsifier in ϕ by claiming
the variable edge in G corresponding to the variable she wants to set to false in ϕ assuming that Breaker
just set the variable xi to true in ϕ. If Breaker claims an edge x1iCj (resp. x2iCj), then Maker claims x2jCj

(resp. x1jCj). Lastly, if Breaker claims an edge incident to u, then Maker claims another edge incident to u.
Whenever Maker cannot employ her strategy, she claims an arbitrary edge, and then goes back to following
her strategy. Since Maker followed Falsifier’s winning strategy in ϕ on the variable edges of G, for at least
one clause, she will have claimed all of the variable edges corresponding to the variables contained in that
clause in ϕ. We can easily locate a Maker’s copy of H containing that clause’s vertex as the unique vertex
of degree 6 in H.

As can be seen in Figure 3.6, the tree H from the proof of Theorem 3.5 has order 91. It would be
interesting to know the order and/or size of the smallest graph H for which the H-game remains PSPACE-
complete. As a step in this direction, in a more involved proof, we showed in [DGI+23] that the H-game is
PSPACE-complete for a graph H of order 51 and size 57. It is worth noting that the orders and sizes of our

69

graphs H in our reductions are dependent on the fact that POS CNF is PSPACE-hard, but it is not known
whether the analogously defined Uniform POS CNF 5 or Uniform POS CNF 4 are PSPACE-hard, which
would allow for smaller H’s to be constructed.

Theorem 3.8 (Duchêne, et al. [DGI+23]). There exists a graph H of order 51 and size 57, such that
deciding whether Maker wins the H-game in a given graph G is PSPACE-complete.

3.2 Polynomial time algorithms

Knowing that the H-game is PSPACE-complete, we try to restrict the input of the problem to obtain positive
results. Using the result of Galliot [Gal23], if H has three edges, the winner of the H-game can be computed
in polynomial time. However, the algorithm provided by Galliot has complexity O(|V (H)|6) where H is
the hypergraph of the game. In the case of the P4-game, we improve this result by providing a linear
time algorithm in any graph. Next, we consider that H is a star, i.e., that Maker aims to claim several
edges adjacent to the same vertex. This game will be referred to as the K1,ℓ-game, and we provide here a
polynomial time algorithm for solving the K1,ℓ-game in trees for any fixed integer ℓ ≥ 1.

3.2.1 Linear-time algorithm for the P4-game

We first give a necessary and sufficient structural condition for Breaker to win the P4-game in any graph G.
This leads to a linear-time algorithm to decide the outcome of the P4-game.

(a) The bull (b) K4 (c) C5 with a leaf (d) Odd cycle

Figure 3.8: Maximal non-bipartite graphs for which Breaker wins the P4-game.

Theorem 3.9. For any connected graph G, Breaker wins the P4-game in G if and only if

1. G is bipartite and all the vertices of degree at least 3 are in the same part; or

2. G is an odd cycle; or

3. G is a subgraph of the bull, K4, or a C5 with a leaf attached to one vertex (see Figure 3.8).

Proof. We first prove the “if” part. One can check with a small case analysis that Breaker wins in the first
three graphs of Figure 3.8, and thus, in all their subgraphs by Lemma 1.19. For the odd cycle, Breaker
wins with the following strategy. Let (e1, . . . , e2ℓ+1) be the edges of the cycle in this order. Without loss of
generality, let e1 be the first edge claimed by Maker. Then, Breaker claims e2ℓ+1, and then follows a pairing
strategy by pairing edges e2i with e2i+1, for 1 ≤ i < ℓ (e2ℓ is not paired).

Thus, we can assume that G is bipartite with all the vertices of degree at least 3 in the same part. Let
V (G) = A ∪ B be a bipartition of the vertices of G with the part A containing all the vertices of degree at
least 3, and so, the vertices of B have degree at most 2. Note that any path on four vertices must contain an
inner vertex in B, and thus, two edges incident to the same vertex in B. Thus, Breaker can win by following
a pairing strategy where, for each vertex v of B, the (potentially) two edges incident to v are paired together.

We now prove the “only if” part. Let G be a graph that does not satisfy the three conditions of Theorem
3.9. The proof is divided into four cases:

70

1. G contains a diamond (K4 minus one edge).

2. G contains a triangle, but not a diamond.

3. G contains an odd path between two vertices of degree at least 3, but not a triangle.

4. G contains an odd cycle with a unique vertex of degree at least 3.

These cases will cover all the possible graphs where Maker wins. Indeed, if G is bipartite, then it would
be treated in Case 3. If G is not bipartite and not an odd cycle, then it has a vertex of degree at least 3
in an odd cycle C. If C contains a unique vertex of degree at least 3, then we are in Case 4. Otherwise, C
contains two vertices of degree at least 3, and thus, there is an odd path between vertices of degree at least
3, and we are in Case 3 if G is triangle-free. Otherwise, G contains a triangle, but not a diamond (Case 2)
or G contains a diamond (Case 1).

Case 1. G contains a diamond. Since G is not restricted to a subgraph of K4, G contains a subgraph
that is a diamond with a leaf connected to it (either to a vertex of degree 3 or to a vertex of degree 2 in the
diamond). One can easily check that Maker wins the P4-game in these subgraphs, and thus, by Lemma 1.19,
she wins in all the graphs containing them.

Case 2. G contains a triangle, but not a diamond. Let uvw be this triangle. Since G is not a triangle
(it would be a subgraph of the bull), at least one vertex, say u, must be connected to another vertex z. Note
that z is not connected to any other vertex of the triangle, as otherwise G would contain a diamond. Since
G is not restricted to the graph on the vertices {u, v, w, z} (because otherwise it would be a subgraph of
K4), there is another vertex x in the graph.

Assume first that x is connected to z. Then, Maker claims zu. Then, she has a pairing strategy with
pairs (xz, vw) and (uv, uw). Assume now that x is connected to u. Then, Maker claims vw, and then follows
a pairing strategy with pairs (xu, zu) and (uv, uw). Finally, assume that x is connected to the triangle,
without loss of generality, by v. Since G is not a bull and does not contain a diamond, there must either be
an additional edge, and it can only be xz (otherwise G would contain a diamond) or there is another vertex
connected to the graph. The first case returns to the case where x was connected to z. For the second case,
the only possibility not covered yet is that there is a vertex t connected to w. Then, Maker claims uw. If
Breaker then claims vx or vu, then Maker claims uz, and pairs tw with wv. Otherwise, w.l.o.g., Breaker
then claims uz. Then, Maker claims uv and pairs tw with vx.

From now on, we can assume that G is triangle-free. Thus, Maker just needs to claim any three consec-
utively incident edges and will be sure to obtain a P4.

Case 3. G contains an odd path between two vertices of degree at least 3, but not a triangle.
Let u and v be two vertices of degree at least 3 connected by an odd path P . We choose u and v such that
P has minimum length. Let e1, . . . , e2ℓ+1 be the edges of P with e1 incident to u, and e2ℓ+1 incident to v.
Let eu and e′u be the two other edges incident to u, and ev and e′v the two other edges incident to v.

If ℓ = 0, then Maker claims e1 and follows a pairing strategy with pairs (eu, e
′
u) and (ev, e

′
v) (eu and e′u

are vertex-disjoint from ev and e′v since G is triangle-free). Assume now that ℓ > 0. Maker starts by claiming
e2. Assume first Breaker does not answer by claiming e1. Then, Maker can claim e1 as her second move.
Then, either she pairs eu with e′u if Breaker did not claim any of these edges on his first move, or she pairs
eu or e′u (the one that is unclaimed) with e3. Therefore, we can assume that Breaker answers by claiming
e1.

Assume now, by induction on 1 < i < ℓ, that before their ith moves, Maker has claimed all the even
edges e2j , and Breaker has claimed all the odd edges e2j−1 for j = 1, . . . , i − 1 (we have shown this is true
for i = 2 above). Then, on her ith move, Maker claims e2i. Breaker has to answer by claiming e2i−1, since
otherwise Maker can claim e2i−1, creating a P4 with e2i and e2i−2. Then, the inductive hypothesis holds for
i+ 1. Repeating this argument, for her ℓth move, Maker claims e2ℓ, and Breaker has to answer by claiming
e2ℓ−1. Then, Maker claims e2ℓ+1 and pairs ev with e′v, which will create a P4.

71

Case 4. G contains an odd cycle with a unique vertex of degree at least 3. Let u be the unique
vertex of degree at least 3 in an odd cycle in G. Let e1, . . . , e2ℓ+1 be the edges of the cycle, with u incident
to e1 and e2ℓ+1. Let v be a vertex adjacent to u, but not in the cycle (it exists since u has degree at least
3). Since G is triangle-free, ℓ > 1. Assume first that ℓ = 2. Since G is not restricted to a C5 with a leaf, and
since any additional edge will create another vertex of degree at least 3 in the cycle, there must be another
vertex w in the graph. If w is adjacent to u, then Maker claims e2. Then, as before for the odd path, Breaker
should answer by claiming e1. Then, Maker claims e4, and Breaker should answer by claiming e3. Finally,
Maker claims e5, and then pairs uv with uw. If w is adjacent to v, then Maker claims uv. Breaker should
answer by claiming vw, as otherwise Maker can make a P3 with two free extremities. Then, Maker can force
moves by claiming e2 (Breaker then claims e1), then e4 (Breaker then claims e3), and then win by claiming
e5.

Assume now that ℓ > 2, i.e., the cycle has length at least 7. Maker claims e4. Breaker should claim
either e3 or e5 to avoid a P3 with two free extremities. If, w.l.o.g., Breaker claims e3, Maker can again force
moves by claiming the even edges e6, . . . , e2ℓ. Breaker always has to answer by claiming the preceding odd
edges e5, . . . , e2ℓ−1. Then, Maker claims e2ℓ+1 and pairs e1 with uv, making a P4.

The conditions given in Theorem 3.9 are checkable in linear time, which implies the following:

Corollary 3.10. It can be decided in linear time whether Maker wins the P4-game in a given connected
graph G.

Solving the Pℓ-game for ℓ > 4 seems difficult, even for trees, since Maker’s winning strategy can be highly
non-trivial. Indeed, already for ℓ = 4, there are trees for which Maker needs an unbounded number of moves
to win and needs to play disconnected. An example is given in Figure 3.9, where there can be an arbitrary
even number of vertices of degree 2 in the middle path. Moreover, this can be generalized for the Pℓ-game
for any ℓ ≥ 4.

Figure 3.9: A tree where Maker wins the P4-game, but must play disconnected. By adding an even number
of vertices of degree 2 in the middle path, this gives a family of trees where the number of moves to win for
Maker is unbounded.

3.2.2 Star-game in trees

In this section, we consider the K1,ℓ-game in trees. In other words, Maker needs to claim ℓ edges adjacent
to the same vertex. We prove that this game is solvable in linear time in trees.

Theorem 3.11. For any tree T and any fixed integer ℓ ≥ 1, it can be decided in linear time whether Maker
wins the K1,ℓ-game in T .

To prove this theorem, we need three structural lemmas. The first one is true for the K1,ℓ-game in any
graph.

Lemma 3.12. For any graph G and any fixed integer ℓ ≥ 1, if G contains a vertex of degree at least 2ℓ− 1,
then Maker wins the K1,ℓ-game in G.

Proof. Let u be a vertex of degree at least 2ℓ − 1. Maker claims any ℓ edges incident to u in her first ℓ
moves.

Lemma 3.13. For any fixed integer ℓ ≥ 1, if T is a tree with maximum degree at most 2ℓ− 2 and at most
one vertex of degree 2ℓ− 2, then Breaker wins the K1,ℓ-game in T .

72

6

4

Figure 3.10: The structure of a tree satisfying the hypothesis of Lemma 3.13 with ℓ = 4

Proof. Let r be a vertex of maximum degree (possibly 2ℓ−2) and root T in r. The structure of T is presented
in Figure 3.10 with ℓ = 4. We define a pairing strategy for Breaker as follows. For any vertex u ∈ V (T),
let v1, . . . , vtu be its children, and pair together the edges {uv2i−1, uv2i} for i = 1 to i = ⌊tu/2⌋. Breaker,
playing this pairing strategy, will claim at least half of the edges incident to r (so Maker will claim at most
ℓ − 1 edges incident to r) and, for any other vertex w ∈ V (T), Breaker will claim at least ⌊ tw−1

2 ⌋ edges
incident to w. Since tw < 2ℓ − 2 as r is the only vertex that could have degree 2ℓ − 2, Maker will claim at
most ℓ− 1 edges incident to u.

The next lemma will enable us to cut a tree into several components when there is a vertex of degree
2ℓ− 2. We first describe the cut operation we are using. Let T be a tree and let uw ∈ E(T). Let Tu and Tw
be the two trees composing the forest T \{uw}, with u ∈ V (Tu) and w ∈ V (Tw). Let T1 be the tree obtained
from Tu by adding one pendant edge incident to u, and let T2 be the tree obtained from Tw by adding two
pendant edges incident to w. We call the forest T1 ∪ T2 a (T, u, uw)-cut. See Figure 3.11 for an illustration.

Lemma 3.14. For any fixed integer ℓ ≥ 1, let T be a tree with a vertex u of degree 2ℓ− 2, w any neighbor
of u, and T1 ∪ T2 the (T, u, uw)-cut. Maker wins the K1,ℓ-game in T if and only if she wins the K1,ℓ-game
in T1 ∪ T2.

Proof. Let e be the edge added to u in T1, and e1, e2 the two edges added to w in T2. By the Super Lemma,
we can without loss of generality suppose that e1 is played by Maker and e2 by Breaker. Assume that Maker
wins in T . In T1∪T2, Maker plays as follows. She associates all the edges of T1∪T2 with their corresponding
edges in T (e is associated with uw). Then, she plays as in T . At the end of the game in T , there is a vertex
x in T that has ℓ incident edges claimed by Maker. If x ̸= w, it has the same ℓ incident edges at the end of
the game in T1 ∪ T2 (with possibly the edge uw replaced by e if x = u). If x = w, and Maker claimed the
edge uw that is not present in T2, in the game in T , then Maker claimed the same ℓ edges in the game in
T1 ∪ T2 except that uw has been replaced by one of the edges e1 or e2.

For the other direction, assume that Maker has a winning strategy in T1 ∪ T2. By Lemma 1.76, she wins
either in T1 or in T2. Assume she wins in T1. Then, she can follow the same strategy in T without taking
care of Breaker’s moves in the rest of T (and considering that e = uw). Assume now she wins in T2. To
win in T , Maker first claims uw. Then, Breaker should answer by claiming an edge incident to u since u has
degree 2ℓ− 2 (otherwise, Maker can claim ℓ edges incident to u). Then, Maker follows her winning strategy
in (T2, {e1}, {e2}) in T . The unclaimed edges are in a one-to-one correspondence, and the vertices have the
same number of edges claimed by Maker (that is, one for w, and 0 for the other vertices). Thus, Maker will
win in T .

The next theorem gives a necessary and sufficient structural condition for Maker to win the K1,ℓ-game
in trees. This will imply Theorem 3.11 since it is easy to check if a tree has this structure (see the proof of
Theorem 3.11 below).

Theorem 3.15. Let T be a tree and ℓ ≥ 1 a fixed integer. Maker wins the K1,ℓ-game in T if and only if
there is a subtree T ′ of T such that every vertex x of T ′ has degree at least 2ℓ−1−dT ′(x) in T , where dT ′(x)
denotes the degree of x in T ′.

73

u w
Tu Tw

T

(T, u, uw)-cut

u w
Tu Tw

T1 T2

Figure 3.11: Illustration of a (T, u, uw)-cut. If u has degree 2ℓ − 2, then the K1,ℓ-game in T or in the cut
has the same outcome.

Note that if T ′ is reduced to a single vertex, it must have degree 2ℓ−1 in T , which corresponds to Lemma
3.12. Otherwise, all the leaves of T ′ must be of degree 2ℓ− 2 in T . The theorem says that these leaves must
be connected by vertices of sufficiently large degree.

Proof. We prove the equivalence by induction on the number of inner vertices of T (i.e., vertices of degree
at least 2). Assume that T has only one inner vertex u. The only possibility for T ′ is to be the single vertex
u, and Maker wins if and only if u has degree 2ℓ− 1. Thus, the equivalence is true.

Assume now, by induction, that the result is true for any tree with at most i− 1 ≥ 1 inner vertices. Let
T be a tree with i inner vertices. If T has at least one vertex u of degree at least 2ℓ − 1, then take T ′ to
be the single vertex u, and Maker wins by Lemma 3.12. If T has maximum degree at most 2ℓ − 2, and T
contains at most one vertex of degree 2ℓ− 2, it is not possible to have a subtree T ′ satisfying the property,
since T ′ cannot be a single vertex, it should have at least two leaves of degree 2ℓ− 2 in T . By Lemma 3.13,
Breaker wins, and so, the equivalence is true.

Thus, we can assume that T has at least two vertices of degree exactly 2ℓ−2. Let u and v be two vertices
of degree 2ℓ − 2 at maximum distance from each other. Let w be the neighbor of u on the path between
u and v. Let T1 ∪ T2 be the (T, u, uw)-cut. Note that by the maximality of the distance between u and v,
the vertex u is the only vertex of T1 of degree 2ℓ − 2. In particular, Breaker wins in T1 by Lemma 3.13.
By Lemma 3.14, Maker wins in T if and only if she wins in T1 ∪ T2. Then, since Breaker wins in T1, by
Lemma 1.76, Maker wins in T if and only if she wins in T2. The tree T2 has strictly less than i inner vertices,
and thus, by induction, Maker wins in T2 if and only if there is a tree T ′

2 such that every vertex of degree t
in T ′

2 has degree 2ℓ− 1− t in T2.
Assume Maker wins in T . This means that such a T ′

2 exists. If w /∈ V (T ′
2), then it is a valid tree T ′ for T .

If w ∈ V (T ′
2), then T

′
2 does not contain the two pendant edges incident to w (since no leaf of T2 can belong

to T ′
2). Then, let T

′ be the subtree of T obtained from T ′
2 by adding u. Note that T ′

2 cannot have leaves of
T as vertices, and thus, all its vertices are inner vertices of T . Since u is a leaf of T ′ and has degree 2ℓ− 2 in
T , it satisfies the degree condition. This is also true for all the other vertices of T ′ except w. Let t2 be the
degree of w in T ′

2. By hypothesis, its degree in T2, dT2
(w), is at least 2ℓ− 1− t2. The vertex w has degree

t2 + 1 in T ′ and dT2
(w) − 1 in T . Thus, dT (w) = dT2

(w) − 1 ≥ 2ℓ − 1 − t2 − 1 = 2ℓ − 1 − dT ′(w), and T ′

satisfies the property.
For the other direction, assume that there is a subtree T ′ valid in T . Let uw′ be the pendant edge

in T1 (i.e., w′ /∈ V (T)). If T ′ is a subtree of T1 \ {w′}, then, by induction, Maker wins in T1, and, by
Lemmas 1.76 and 3.14, she wins in T . Otherwise, let V (T ′

2) = V (T ′) ∩ V (T2). As before, one can prove
that the degree condition is correct for each vertex in T ′

2 in T2 (indeed, if u was in T ′, then w has one less
neighbor in T ′

2 than it did in T ′, but this is compensated by the fact that w has one more neighbor in T2).
Thus, by induction, Maker wins in T2, and so, by Lemmas 1.76 and 3.14, Maker wins in T .

Therefore, the equivalence is true for T , and, by induction, is true for all T .

This characterization implies a linear-time algorithm for the K1,ℓ-game in trees.

Proof of Theorem 3.11. To find such a T ′, one can do a breadth-first search starting from any vertex of T .
Label each vertex with its degree in T . Then, consider each vertex x, starting from the deepest level. If x
has label 2ℓ−2, then increment the label of the parent of x by 1, and otherwise, do nothing. If at some point
a vertex is labeled with 2ℓ−1, then Maker wins, and otherwise, Breaker wins. Note that when we increment

74

the label of a vertex, it corresponds to the cut operation. Precisely, if a vertex v receives a label 2ℓ−1, let Tv
be the subtree rooted in v. Then, a subtree T ′ satisfying the requirement is the inclusion-minimal subtree
of Tv containing v and whose leaves (̸= v) have degree 2ℓ− 2 in T .

This result is quite restrictive, since it requires conditions on both H and G. In the next section, we
extend this result by removing either the condition on H or the condition on G, leading to an FPT algorithm,
parameterized by the number of moves, but not a polynomial time algorithm.

3.3 Parameterized results

In this section, we consider the H-game parameterized by the number of moves k to build the graph H.
Note that it would not be pertinent to consider the perfect matching game parameterized by the number of
moves, since every winning set in the perfect matching game is of order n

2 , and thus Maker needs at least n
2

moves to win.
For the H-game, the fact that Maker must win in k moves makes the winning conditions expressible in

first-order logic with 2k quantifiers. Thus, using meta-theorems [Cou90, FG01, BKTW20], it is possible to
compute the winner in FPT time parameterized by k in any graph class in which first-order model checking
can be done in FPT time, parameterized by the number of variables.

Theorem 3.16. Determining whether Maker can build a copy of H in k moves parameterized by k is FPT
in any graph class in which first-order model checking can be done in FPT time, parameterized by the number
of variables.

In particular, determining whether Maker can build a copy of H in k moves is FPT in graphs of bounded
twin-width, or bounded degree for example. However, these meta-theorems do not provide an optimal
strategy for the winning player. We provide here a proof that does not use these theorems to obtain an FPT
algorithm that computes the winner in trees for any graph H, or when H is a star in any graph G. The main
idea of our construction is to prove that, whenever Maker can win, she can restrict her moves to a subgraph
of bounded size.

The next theorem is crucial for these results, and is interesting on its own since it allows bounding the
diameter of the graph after Maker’s first move, which could lead to other positive results for the H-game,
and the proof technique could be generalized to other games on graphs.

For any graph G, e = (u, v) ∈ E(G), and r ∈ N, let BG(e, r) be the ball of center e and radius r, i.e. the
set of edges at distance at most r from the two extremities of e. Formally, we have:

BG(e, r) = {(w,w′) ∈ E(G) | max{distG(u,w), distG(v, w), distG(u,w′), distG(v, w
′)} ≤ r}.

Given a graph G and X,Y ⊆ E(G) (with |X| = |Y |+ 1), Breaker wins the H-game in position (G,X, Y) in
i ≥ 1 moves if it is Breaker’s turn and Maker cannot create H in at most i − 1 moves after Breaker’s next
move.

The next theorem will be the key of our parameterized complexity results about the H-game. It relies
on the idea that, whenever the number of moves of Maker is bounded, the moves that she makes have to
be close enough to each other in order to create threats of creating a copy of H. More precisely, we prove
that if two moves of Maker are at a distance larger than 3k, then Maker cannot use both of them to create
a threat on a hyperedge in less than k moves.

Theorem 3.17. Let H be a connected graph, G any graph, and k a positive integer. Maker wins the H-
game in G in at most k moves if and only if there exists e ∈ E(G) such that Maker wins the H-game in
G[BG(e, 3

k)] in at most k moves.

Proof. First, if there exists e ∈ E(G) such that Maker wins the H-game in G[BG(e, 3
k)] in at most k moves,

then Maker wins the H-game in G in at most k moves by Lemma 1.19. Now, assume that Breaker wins the
H-game in G[BG(e, 3

k)] in at most k moves for each e ∈ E(G). We describe a winning strategy for Breaker
in the H-game in G that takes at most k moves.

75

Let e1 be the first edge claimed by Maker, and let G1 = G[BG(e1, 3
k)]. Note that Breaker wins the H

game in (G1, {e1}, ∅) in at most k moves by the initial assumption. In particular, if Maker always claims an
edge in G1, then Breaker wins.

First, Breaker answers to Maker claiming e1 by following his winning strategy in G1. Let 2 ≤ i ≤ k be
the ith round of the game, before the ith move of Maker, and let Mi = {e1, . . . , ei−1} be the edges claimed
by Maker, and Bi = {f1, . . . , fi−1} the edges claimed by Breaker. Assume, by induction on i, that there
exist edge-disjoint subgraphs G1, . . . , Gsi such that:

• for every 1 ≤ j ≤ si, there exists ej ∈ E(G) such that E(Gj) ⊆ BG(ej , 3
k);

• for every e ∈Mi, there exists a unique 1 ≤ jie ≤ si such that e ∈ E(Gjie
) and, moreover, BG(e, 3

k−i+1) ⊆
E(Gjie

);

• for every 1 ≤ j ≤ si, Breaker wins the H-game in (Gj , E(Gj) ∩Mi, E(Gj) ∩ Bi) in at most k − i + 1
moves.

The inductive hypothesis holds if i = 2 by remarks above (in particular, s2 = 1). Assume that the
inductive hypothesis holds for i ≥ 2. Let ei be the ith edge claimed by Maker.

The main idea of the induction is to see how the ball Bi = BG(ei, 3
i) interacts with the already considered

balls. If Bi is included in one of them, the winning strategy of Breaker in that ball will ensure that he prevents
any creation of a copy of H. If it is disjoint to all the other balls, Breaker considers this new ball and has a
winning strategy in it by hypothesis. If it intersects some of the previous balls, by hypothesis, since Maker
now has one less move, we can reduce the radius of the balls that intersect Bi and he considers Bi as a new
ball.

• If there exists 1 ≤ j ≤ si such that BG(ei, 3
k−i) ⊆ E(Gj), then Breaker answers by following his

winning strategy in Gj . Note that in this case, j is unique since G1, . . . , Gsi are edge-disjoint subgraphs
by the inductive hypothesis for i. Then, the inductive hypothesis holds for i+1 with the same subgraphs
G1, . . . , Gsi (in particular, si = si+1).

• If BG(ei, 3
k−i) ∩ E(Gj) = ∅ for all 1 ≤ j ≤ si, then let si+1 = si + 1 and Gsi+1

= G[BG(ei, 3
k−i)].

Then, Breaker answers by following his winning strategy in Gsi+1
, which exists by the assumption

that Breaker wins the H-game in G[BG(e, 3
k)] in at most k moves for each e ∈ E(G), and since

G1, . . . , Gsi+1 are edge-disjoint subgraphs by the inductive hypothesis for i and the case we are in.
Indeed, by Lemma 1.19, Breaker has a winning strategy in G[BG(ei, 3

k−i)] in k− i moves since he has
one in G[BG(ei, 3

k)] in k moves (if Maker cannot create H in k moves, then she clearly cannot do it in
k − i moves in a subgraph). Then, the inductive hypothesis holds for i+ 1.

• Lastly, if there exists ∅ ≠ J ⊆ {1, . . . , si} such that, for all j ∈ J , BG(ei, 3
k−i) ∩ E(Gj) ̸= ∅ and

BG(ei, 3
k−i) \ E(Gj) ̸= ∅, then let si+1 = si + 1 and Gsi+1 = G[BG(ei, 3

k−i)]. Now, for every
j ∈ J , let Ej = {f ∈ E(Gj) | B(f, 2 · 3k−i) ⊈ E(Gj)}. Note that for every f ′ ∈ Mi and j ∈ J ,
Ej ∩ B(f ′, 3k−i) = ∅ by the second assumption of the inductive hypothesis for i. For all j ∈ J , let
Gj = G[E(Gj) \ Ej] (intuitively, the edges of Gj that are “too close” to Gsi+1

are removed from
Gj), and note that G1, . . . , Gsi+1 are now edge-disjoint subgraphs since G1, . . . , Gsi were edge-disjoint
subgraphs by the inductive hypothesis for i. Now, Breaker plays his next move according to his winning
strategy in Gsi+1

, which, as in the previous case, exists by the assumption that Breaker wins the H-
game in G[BG(e, 3

k)] in at most k moves for each e ∈ E(G), and since G1, . . . , Gsi+1
are edge-disjoint

subgraphs. Then, the inductive hypothesis holds for i+ 1.

The inductive hypothesis and the strategy described above guarantee that Breaker wins, i.e., Maker
cannot win in G in at most k moves.

With Theorem 3.17 in hand, we now have one of the main tools to prove our FPT results, which rely on
the fact that we only need to consider the ball (of edges) of bounded diameter in the length of the game

76

centered at the first edge claimed by Maker. The next corollary focuses on the K1,ℓ-game in graphs. As
we know that, whenever a graph G has a vertex of high degree, Maker can win the K1,ℓ game in ℓ moves,
we can bound the number of vertices in each ball considered in Theorem 3.17, and therefore, the size of the
graph.

Corollary 3.18. For any graph G and any fixed integer ℓ ≥ 1, deciding whether Maker wins the K1,ℓ-game
in G is FPT parameterized by the length of the game.

Proof. Consider the K1,ℓ-game, for a positive constant ℓ (recall that H is a fixed graph in the H-game), in
any graph G. Let k be the length of the game. If there is a vertex of degree at least 2ℓ − 1, then Maker
wins in ℓ moves by Lemma 3.12. Hence, we can assume that the maximum degree is at most 2ℓ − 2. By
Theorem 3.17, Maker wins in G in k moves if and only if she wins in k moves in one of the balls B(e, 3k)
for some edge e ∈ E(G). Since ∆(G) ≤ 2ℓ − 2, for any edge f ∈ E(G), the ball B(f, 3k) has size at most

(2(∆(G) − 1))3
k

= (4ℓ − 6)3
k

, i.e., a function of k since ℓ is a constant. Therefore, one can check if Maker
wins by first checking the maximum degree, and then checking the outcomes of all possible games in the
|E(G)| balls (of edges) of diameter 3k which have size bounded by a function f(k). Indeed, this leads to
an FPT algorithm since, in any graph of size bounded by a function f(k), the output of the H-game in at
most k moves can be determined by an exhaustive search in time f ′(k) for some computable function f ′

(the length of the game is k, and the number of possible moves at each step is at most the number of edges
which is at most f(k)).

Theorem 3.17 combined with the particular structure of trees also leads to an FPT algorithm on trees.
Here, the main idea is, when considering a ball of diameter 3k, its farthest vertices from the center are leaves.
Therefore, as Maker plays only k moves, she cannot claim more than k of them, and so only 2k moves need
to be considered. Then, inductively, as there is a function of k vertices at most to be considered at distance
d from the center of the ball, there is a function of d and k possible subtrees for the vertices at distance
d− 1. Therefore, we only need at most 2k of each different neighborhood to compute the winner. Following
this induction until we reach the center of the ball, we obtain a function of k vertices to be considered in the
ball.

Theorem 3.19. For any connected graph H and any tree T , deciding whether Maker wins the H-game in
T is FPT parameterized by the length of the game.

Proof. First, note that if H is not a tree, then Breaker trivially wins the H-game in T , and so, we can assume
that H is a tree. We prove that the H-game parameterized by the length of the game k admits a kernel in
T . That is, from T , we build, in polynomial time, a forest F of size at most a function of k (precised below)
such that Maker wins in T in at most k moves if and only if there exists a connected component of F in
which Maker wins in at most k moves.

First, for every edge e ∈ E(T), let Te be the subtree of T induced by the edges at distance at most 3k

from e, i.e., Te is the subtree induced by B(e, 3k). Let F be the forest that consists of the disjoint union
of the Te’s, e ∈ E(T). By Theorem 3.17, Maker wins in T in at most k moves if and only if there exists
e ∈ E(T) such that Maker wins in Te in at most k moves.

The depth of a rooted tree is the maximum distance from its root to a leaf. For every e ∈ E(T), let us
root Te in such a way that it has depth de ≤ 3k (this is possible by the definition of Te). A vertex v ∈ V (Te)
has level i ≥ 0 if the subtree of Te rooted in v has depth i. Let us iteratively, for i = 1 to de, replace T

i−1
e

(Te = T 0
e) by a tree T i

e such that: Maker wins in T i−1
e in at most k moves if and only if Maker wins in at

most k moves in T i
e ; and, for every vertex v ∈ V (T i

e) at level i, the subtree of T
i
e rooted in v has size at most

ni(k) (a function of k whose recursive definition is given below).
First, for i = 1, for every vertex v at level 1 in Te, (i.e., all children of v are leaves), if v has more than 2k

children, then remove all but 2k of its children. Let T 1
e be the obtained tree. By construction, every vertex

v ∈ V (T 1
e) at level 1 is the root of a subtree of size at most n1(k) = 2k+1. Moreover, since, for every vertex

v at level 1 in Te, at most 2k edges between v and leaves can be claimed (as the length of the game is k),
then the output of the H-game is the same in Te and T 1

e .

77

Now, by induction on i ≥ 1, let us assume that we have built a tree T i
e such that Maker wins in T i

e in
at most k moves if and only if Maker wins in at most k moves in Te; and, for every vertex v ∈ V (T i

e) at
level i, the subtree of T i

e rooted in v has size at most ni(k). Let gi(k) be the number of rooted trees of
depth at most i and of size at most ni(k). For every v ∈ V (T i

e) at level i+ 1, let S1, . . . , Sr be the subtrees
rooted in the children of v (note that each of these subtrees has depth at most i and size at most ni(k)). For
every possible rooted subtree S of depth i and size at most ni(k), if there are more than 2k copies of S in
the multiset of trees {S1, . . . , Sr}, then remove all but 2k copies of S. Let T i+1

e be the resulting tree (after
having done the above process for every vertex at level i+ 1 of T i

e). In T
i+1
e , every vertex at level i+ 1 has

at most 2kgi(k) children and those children are the roots of subtrees of size at most ni(k), and hence, every
vertex at level i + 1 is the root of a subtree of size at most ni+1(k) = 2kgi(k)ni(k). Moreover, for every
vertex v at level i + 1 in T i

e , at most 2k edges in the subtree rooted at v can be claimed. Therefore, the
output of the H-game is the same in T i

e and T i+1
e .

After the above process has been done for i = de ≤ 3k for each subtree Te, e ∈ E(T), F consists of the
disjoint union of the trees T 3k

e , e ∈ E(T), each of size at most n3k(k), and Maker wins in T in at most k
moves if and only if she wins in at most k moves in some connected component of F . While two of these
subtrees are isomorphic, let us remove one of the two isomorphic subtrees. This clearly preserves the fact
that Maker wins the H-game in T in at most k moves if and only if she wins in at most k moves in some
connected component of F . Moreover, eventually, F has size at most g3k(k)n3k(k), i.e., this is the desired
kernel.

To conclude, this leads to an FPT algorithm since, in any graph of size bounded by a function f(k), the
output of the H-game in at most k moves can be determined by an exhaustive search in time f ′(k) for some
computable function f ′ (the length of the game is k, and the number of possible moves at each step is at
most the number of edges which is at most f(k)).

3.4 Further work

We proved in this chapter that for both the H-game and the perfect matching game, it is PSPACE-complete
to compute the winner. Since it was already known from Lehman [Leh64] that the connectivity game can
be solved in polynomial time, among the most famous game on edges in the literature, the last one whose
complexity is unknown is the Hamiltonicity game. The similarities between Hamiltonian cycles and perfect
matchings invite us to make the following conjecture.

Conjecture 3.20. Deciding whether Maker wins the Hamiltonicity game in a given graph G is PSPACE-
complete.

Considering the H-game, the graph provided in our reduction has 57 edges. Recall that by Theorem 1.66,
if H has three edges, the winner can be computed in polynomial time. The size of the smallest graph H
for which the H-game is PSPACE-complete can still be reduced. In particular, note that if Conjecture 1.67
holds, we can remove two branches of the graph given in Theorem 3.8, removing 18 edges. The resulting
graph H would then have 39 edges. On the other hand, we can ask what is the largest integer k such that
the H-game is polynomial for any graph H of size at most k.

In terms of positive results, we have managed to provide a linear algorithm for the P4-game. Two possible
extensions would be either to look at another graph with three edges, or to the Pk-game for larger values of
k. Among the graphs with three edges, one should look at the K1,3-game. The algorithm provided to solve
this game in trees is linear, and one can wonder if we can adapt it to solve it in general graphs.

In terms of parameterized complexity, we have only considered here the number of moves, which is the
most natural parameter in combinatorial games. However, since we are dealing with games on graphs, a study
of the H-game parameterized by some graph parameters could be interesting, as we will do in Chapter 4 for
the domination game.

Finally, using the results of Theorem 2.1 and Theorem 2.10, it would be natural to prove that the H-
game and the perfect matching game are also PSPACE-complete in the Avoider-Enforcer or the Client-Waiter

78

convention. If so, it would be interesting to know if there exists some graphs H such that the H-game is
PSPACE-complete in one convention but not in another.

79

Chapter 4

Parameterized complexity of the
Maker-Breaker domination game

Modern problems require modern solutions.

In Chapter 3, we focused on games on edges of graphs. The other way to play positional game on graphs
is to claim vertices instead of edges. Among the games played on vertices of graphs, we focus here on the
Maker-Breaker domination game, introduced by Duchêne et al. [DGPR20] in 2020. In their study, they proved
that the problem of determining the winner is PSPACE-complete, even when restricted to split or bipartite
graphs, but polynomial when restricted to trees and cographs. Therefore, we aim to fill the gap between
these two complexity classes by considering the game under the parameterized complexity paradigm. This
study completes the study of Bonnet et al. [BGL+17], as in particular we prove that determining whether
Breaker can claim a transversal in a hypergraph in k moves is W[2]-hard (Corollary 4.14), opposite to their
results concerning Maker filling up a hyperedge which is W[1]-complete. On the positive side, we provide
FPT algorithms for several graph parameters that generalize classes of graphs on which the problem can
be solved in polynomial time. In practice, we provide kernels for the parameters modular-width, size of a
minimum feedback edge set and distance to cluster, which are the generalization of cographs, trees, and
clusters respectively.

In Section 4.1, we will present some known results about the Maker-Breaker domination game. Next,
in Section 4.2 we introduce some lemmas that will be useful in the proofs of the rest of this chapter. In
Section 4.3, we prove that determining the winner of the Maker-Breaker domination game is W [1]-complete
when parameterized by the number of moves required for Staller to win, but that it is W [2]-hard when
parameterized by the number of moves required for Dominator to win. We then focus on the Maker-Breaker
domination game parameterized by different graph parameters. First, in Section 4.4 we prove that the game
remains PSPACE-complete, even restricted to graphs having a domination set of size 2. Then, we consider
the modular-width as parameter in Section 4.5, and we obtain an FPT algorithm for this parameter. In
Section 4.6, we focus on the size of a minimum feedback edge set, providing a linear kernel. Finally, in
Section 4.7, we propose the distance to cluster as a parameter, but the kernel provided is not polynomial
here.

This work was a collaboration with Guillaume Bagan, Mathieu Hilaire and Aline Parreau [BHOP].

4.1 Maker-Breaker domination game

We present here the state of the art on the Maker-Breaker domination game, introduced by Duchêne
et al. [DGPR20]. Recall first that the Maker-Breaker domination game is played on a graph G. Two
players, Dominator and Staller take turns claiming an unclaimed vertex of the graph. If Dominator claims
a winning set, she wins. Otherwise, if Staller prevent her for claiming a winning set before all the vertices

80

vertex cover

neighborhood diversity

modular width distance to cluster

feedback edge set

feedback vertex set

Cliquewidth

distance to union of stars

FPT

Open

Figure 4.1: Hasse diagram of the parameters presented here. If a node a parameter is bounded for a class of
graph, it is bounded for its descendant in the tree. Consequently, being FPT for the modular width, or the
distance to cluster shows that computing the outcome of the Maker-Breaker Domination game is also FPT
for the neighborhood diversity and the size of a minimum vertex cover.

are claimed, Staller wins. Note that given a graph G = (V,E), the natural hypergraph for this game should
be the hypergraph H = (X ,F) where X = V and F is the set of dominating sets of G. However, this
hypergraph can have an exponential number of hyperedges. Therefore, the hypergraph considered will often
be defined by H = (X ,F) where X = V and F = {N [v]|v ∈ V }, so that it has o(|V |) hyperedges. Indeed,
filling up a hyperedge for Maker will then be equivalent to isolating a vertex for Staller, and thus corresponds
to claiming a transversal in the hypergraph of the dominating sets.

The players in the Maker-Breaker domination game will then be named Dominator and Staller, to avoid
confusion between the two representations. We adapt the notations of the outcomes and positions. If G is
a graph its outcome is defined by:

• o(G) = Dom if Dominator has a winning strategy on G going either first or second.

• o(G) = N if player going first has a winning strategy on G.

• o(G) = Stall if Staller has a winning strategy on G going either first or second.

Positions will be denoted (G,D, S), where G is a graph, D is the set of vertices claimed by Dominator and
S is the set of vertices claimed by Staller.

When they introduced the game, Duchêne et al. studied the complexity of this game, and they obtained
different results for several classes of graphs. The result that motivates the study of the parameterized
complexity of the Maker-Breaker domination game is its PSPACE-completeness.

Theorem 4.1 (Duchêne et al. [DGPR20]). Determining the outcome of the Maker-Breaker domination game
is PSPACE-complete, even if the input graph is supposed to be split or bipartite.

The proof of this theorem is a reduction from POS CNF, and the graph provided is similar to the one
provided in Figure 2.5 for split graphs, and the same without edges between the vis for bipartite graphs.

Next, they introduced pairing dominating sets, as an application of pairing strategies in the Maker-
Breaker domination game. Later, they proved that in several classes of graphs, the outcome is M if and
only if the graph admits a pairing dominating set.

Definition 4.2 (Pairing Dominating Set [DGPR20]). Let G = (V,E) be a graph. A subset of pair of
vertices P = {(u1, v1), ..., (uk, vk)} of V is a pairing dominating set if all the vertices are distinct and if the
intersections of the closed neighborhoods of each pair cover all the vertices of the graph:

V = ∪ki=1N [ui] ∩N [vi].

81

An example of pairing dominating set is represented in Figure 4.2.

v2 v3 v4 v5

v8

v9

v1

v7

v6

Figure 4.2: An example of pairing dominating set. The set P = {(v7, v8), (v1, v2), (v3, v6), (v4, v5)} is a
pairing dominating set of the graph.

Lemma 4.3 (Duchêne et al. [DGPR20]). Let G be a graph. If G contains a pairing dominating set, Domi-
nator wins the Maker-Breaker domination game on G going first or second, i.e., o(G) = Dom.

A simple example of application of this lemma is when the graph can be covered by cliques of order at
least two. If this is the case, Dominator has a winning strategy which consists in playing at least once in each
clique. However, note that this lemma is only an implication. The difficult part is then to find conditions
in which there is an equivalence. They proved in [DGPR20] that the equivalence is true for cographs and
forests. Moreover, in cographs and forests, pairing dominating sets can be computed, in polynomial time.

Theorem 4.4 (Duchêne et al. [DGPR20]). Let G be a cograph or a forest. G admits a pairing dominating
set if and only if o(G) = Dom.

The proof for cographs relies mostly on the fact that union in Maker-Breaker games can be handled by
using Table 4.1. Moreover, the join of two graphs is also easy to handle, as they proved with the following
theorem.

outcome Stall N Dom
Stall Stall Stall Stall
N Stall Stall N
Dom Stall N Dom

Table 4.1: Outcome of the union of two Maker-Breaker domination games.

Theorem 4.5 (Duchêne et al. [DGPR20]). Let G and H be two graphs. If G = K1 and o(H) = Stall (or
o(G) = Stall and H = K1), then o(G⊗H) = N . Otherwise o(G⊗H) = Dom.

For forests, it relies mostly on the next important lemma, which provides optimal moves for Staller and
forcing moves for Dominator.

Lemma 4.6 (Duchêne et al. [DGPR20]). Let (G,D, S) be a position. Let v0 be an unclaimed leaf of G and
v1 its private neighbor. If it is Staller’s turn and v1 is unclaimed, then playing v1 is an optimal move and
(G,D, S) and (G \ {v0, v1}, D, S) have the same outcome

By applying this Lemma until it cannot be applied, there are only three possibilities, depicted in Fig-
ure 4.3:

82

• The resulting graph is empty. In this case, what was removed is a perfect matching, which is a pairing
dominating set and the outcome is Dom.

• The resulting graph is a star with either zero or at least two branches. In this case by playing the
center vertex of the star, the first player wins and the outcome is N .

• Any other tree contains two cherries, i.e., an internal vertex adjacent to at least two leaves. In this
case Staller wins, and the outcome is Stall.

∅

empty a star two cherries

T

Figure 4.3: Trees that cannot be reduced

4.2 Preliminary results

We first introduce reductions lemmas that will be used to remove the vertices already played by some players.
The first one consider vertices claimed by Staller but already dominated by Dominator. The intuition behind
Lemma 4.7 is that, a vertex claimed by Staller but already dominated cannot be used to dominate or create
traps.

Lemma 4.7. Let (G,D, S) be a position. Let v ∈ S, that has already a neighbor in D. Then (G,D, S) and
(G \ {v}, D, S \ {v}) have the same outcome.

Proof. Let (G,D, S) be a position. Let X ⊂ V (G) \ (D ∪ S) be a set of vertices. We have that X ∪ D is
a dominating set of G if and only if X ∪ D is a dominating set of G \ {v}. Therefore, the winning sets of
(G,D, S) and (G \ {v}, D, S \ {v}) are the same, so, by Observation 1.75 they have the same outcome.

Next lemma considers vertices played by Dominator. These vertices cannot be removed as we have to get
track of which vertices are already dominated or not, but as they can be transformed into leaves to better
understand the structure of the graph, see Figure 4.4.

Lemma 4.8. Let (G,D, S) be a position. Let v ∈ D of degree d, and let v1, . . . , vd be the neighbors of v.
Let G′ be the graph obtained from G \ {v} and by adding d new vertices u1, . . . , ud, private neighbors of
v1, . . . , vd. Then (G,D, S) and (G′, D ∪ {u1, . . . , ud} \ {v}, S) have the same outcome. If this happens, we
say that we split the vertex v.

Proof. Let (G,D, S) be a position. Let X ⊂ G \ (D ∪ S) be a set of vertices. We have that D ∪ X is a
dominating set of G if and only if X ∪ D ∪ {u1, . . . , ud} \ {v} is a dominating set of G′. Therefore, the
winning sets of (G,D, S) and (G′, D ∪ {u1, . . . , ud} \ {v}, S) are the same. Thus, by Observation 1.75 they
have the same outcome.

Finally, we introduce the following lemma, to deal with pending paths, as they may occur when we apply
Lemma 4.8 in larger paths.

Lemma 4.9. Let Pn be a path of order n. We have o(Pn, {v1}, ∅) = o(Pn, {v1, vn}, ∅) = Dom where v1 and
vn are the leaves of Pn.

83

v1

v2

v3v5

v0
D

v4

v1

v2

v3v5

u1
D

u5
D

v4

Figure 4.4: Split on the vertex v0 using Lemma 4.8

Proof. It is sufficient to prove this lemma with only v1 claimed by Dominator by Lemma 1.19, since when
Dominator has also claimed vn, the hypergraph obtained is a subhypergraph to the one where she has not.

Let Pn be a path of order n. Denote its vertices v1, . . . , vn such that (vi, vi+1) ∈ E(Pn). Suppose that
Dominator has already claimed v1. If n is odd, P = {(v2i, v2i+1)}1≤i≤n−1

2
is a pairing dominating set. If n

is even, P = {(v2i−1, v2i)}2≤i≤n
2
is a pairing dominating set. Thus by Lemma 4.3, Pn has outcome Dom

4.3 Number of moves

In this section, we consider as parameter the number of moves a player needs to win. In the Maker-Breaker
domination game. Given an integer k, the two related decision problems become: “Can Staller claim the
neighborhood of a vertex in k moves?”, or “Can Dominator claim a dominating set in k moves ?”.

In Subsection 4.3.1, we prove that determining whether Staller can isolate a vertex in k moves is W[1]-
complete, parameterized by k. In Subsection 4.3.2, we prove that this problem is W[2]-hard when it is Domi-
nator that has to dominate in few moves. As an application of the later result, we obtain that Maker-Breaker
games are W[2]-hard parameterized by the number of moves required for Breaker to win. A consequence of
this result is that computing the winner of a Maker-Breaker positional game, parameterized by the number of
moves of Breaker needs to win, isW[2]-hard. This result is surprising in contrast to its pendant parameterized
by the number of moves of Maker which is W[1]-complete according to Bonnet et al. [BGL+17].

4.3.1 When Staller must win in few moves

The next theorem proves that the Maker-Breaker domination game isW[1]-hard parameterized by the number
of moves required for Staller to win. The reduction mostly consists in adapting the reduction provided by
Duchêne et al. [DGPR20] from POS CNF so that it can handle the number of moves.

Theorem 4.10. Determining the winner of the Maker-Breaker domination game parameterized by the num-
ber of moves required for Staller to win is W[1]-complete.

Proof. We start by proving that the Maker-Breaker domination game is in W[1]. We recall that the hyper-
graph considered when Staller is Maker is the hypergraph of the neighborhood of the vertices of G. Thus, it
has a polynomial number of vertices and of edges. Therefore, by a result from Bonnet et al. [BGL+17], the
game is in W[1].

We provide a proof from the general Maker-Breaker game parameterized by the number of moves required
for Maker to win, which is known to be W[1]-complete from Bonnet et al. [BGL+17]. Let H = (X ,F) be a
hypergraph and k be an integer. Without loss of generality, suppose that every vertex in H is in at least one
hyperedge. The graph G = (V,E) we construct is similar to the one provided in Chapter 2, Section 2.3.1
with p = k + 2:

• For each vertex ui in X , we add a vertex vi in V . Denote by K the set of vertices created during this
step.

84

• For each hyperedge f in F , we add k+2 new vertices v1f , . . . , v
k+2
f in V . Denote by S the set of vertices

created during this step.

• For each pair of vertices ui, uj ∈ X , we add an edge between vi and vj in E.

• If a vertex ui of X belongs to a hyperedge f of F , we add the edges (vi, v
1
f), . . . , (vi, v

k+2
f) to E.

We prove that Staller can isolate a vertex of G in k+1 moves if and only if Maker wins on H in k moves.
Suppose that Maker has a winning strategy S on H in k moves. We provide a winning strategy for Staller

in k + 1 moves on G as follows:

• If Maker goes first in H, Staller claims first the vertex vi such that ui is the first vertex claimed in S
by Maker.

• If Dominator claims a vertex vi, Staller answers by claiming the vertex vj such that uj is the answer
to the vertex ui in S.

• If Dominator plays a vertex vif for i ∈ {1, k + 2}, Staller considers that she has played an arbitrary
unclaimed vertex uj instead, and plays a vertex vj according to this move in S.

• When Staller will have claimed k vertices, as S was a winning strategy in H, there exists a hyperedge
f ∈ F fully claimed by Maker. Staller claims with his (k + 1)th move a vertex vif with 1 ≤ i ≤ k + 2.
Note that Dominator has claimed at most k+ 1 of them (k if Staller was first to play on H), thus one
of them is available.

By construction, Staller with this strategy has claimed one vertex vif and all its neighbors, thus has won
in k + 1 moves.

Suppose now that Breaker has a strategy S in H forcing Maker to play more than k moves. We provide
a strategy for Dominator in G as follows:

• If Breaker goes first in H, Dominator claims first the vertex vi such that ui is the first vertex claimed
in S.

• If Staller claims a vertex vi, Breaker answers by claiming the vertex vj such that uj is the answer to
the vertex ui in S.

• If Staller plays a vertex vif for i ∈ {1, k + 2}, Dominator plays an arbitrary vertex of the graph, and
considers that Maker has not played this move yet.

• When Staller claims his kth vertex, if he has played no vertex vif , Dominator claim any unclaimed

vertex of the graph. If he has claimed at least one vertex vif , she claims the vertex vj corresponding

to the vertex uj that would have been claimed according to S, which exists as the move on vif was
ignored in S.

Following this strategy, if Staller did not play a vertex vif during his k first moves, he cannot have claimed

all the vertices corresponding to a hyperedge of H. Therefore, he cannot isolate a vertex with his k + 1th

move. Since the vertices vi have at least k + 2 neighbors each (we assumed that each vertex is in at least
one hyperedge), and even if his last move would fill up a hyperedge, he has not played any vertex vif , and

therefore cannot have isolated any of them. If Staller has played at least one vertex vif , he has played at
most k vertices vj . Since Dominator’s answers followed S, Staller cannot have played all the neighbors of a
vertex vif . In both cases, no vertex was isolated in the first k + 1 moves of Staller, and Dominator has won.
This reduction is clearly polynomial.

Finally, the game is both in W[1] and W[1]-hard, thus, it is W[1]-complete.

Note also that, as the hypergraph of the Maker-Breaker domination game, where Staller needs to isolate
a vertex in few moves has linear size, the results from Bonnet et al. [BJS16] can be applied. Therefore, this
problem, can be solved in FPT time on graphs of locally bounded treewidth.

85

4.3.2 When Dominator must win in few moves

This subsection focuses on the proof that, when parameterized by the number of moves required for Domina-
tor to win, the Maker-Breaker domination game is W[2]-hard. Note that contrary to the previous subsection,
the hypergraph considered for Dominator does not have polynomial size in general, so we cannot apply the
result from Bonnet et al. proving that this game is in W[1]. To prove its hardness, we will provide a reduction
from the k-Dominating set problem, which is defined as follows:

Problem 4.11 (k-Dominating set).
Input: a graph G and an integer k
Output: ⊤ if G has a dominating set of size k, ⊥ otherwise.

Theorem 4.12 (Downey and Fellows [DF95]). The k-Dominating set problem is W[2]-complete parameter-
ized by k.

Theorem 4.13. Determining the winner of the Maker-Breaker domination game is W[2]-hard, parameterized
by the number of moves required for Dominator to win.

Proof. The proof is a reduction from the k-dominating set problem. Let G = (V,E) be a graph, and k be
an integer. We build a graph G′ = (V ′, E′) as follows:

• For any vertex xi ∈ V , we add two vertices yi and y
′
i in V

′ and the edge (yi, y
′
i) in E

′.

• For any edge (xi, xj) ∈ V , we add the edges (yi, yj), (yi, y
′
j), (y

′
i, yj) and (y′i, y

′
j) in E

′.

We prove that Dominator wins in k moves in G′ if and only if G admits a dominating set of size k. First,
suppose that G admits no dominating set of size k, and consider any game on G′. Let D = {xi1 , . . . , xik}
be the vertices of G such that for each j ∈ {i1, . . . , ik}, Dominator has claimed either yj or y′j in G′ at
the end of the game. By hypothesis, D is not a dominating set. Thus, there exists a vertex xi0 such that
N [xi0]∩D = ∅. Thus, Dominator has not claimed xi0 nor any of its neighbor, thus has not won in k moves.

Suppose now that G has a dominating D = {xi1 , . . . , xik} of size k. Dominator can play a pairing strategy
in G′ by pairing for each j ∈ {i1, . . . , ik} the vertices yj and y′j . By hypothesis, she will win in k moves by
claiming once in each of these pairs.

As, the hypergraph of the Maker-Breaker domination game where Dominator plays the role of Breaker
has linear size, we directly obtain the following corollary by considering the Maker-Breaker game on that
hypergraph instead of playing on a graph:

Corollary 4.14. Determining whether Breaker can win in k moves in a Maker-Breaker positional game is
W[2]-hard.

Note that the main point of this result is that, it proves that, when parameterized by the number of
moves required for Breaker ton win, Maker-Breaker games are not in W[1] (unless W[1] = W[2] which is
believed to be false). Whether it is W[2]-complete or whether it can be W[k] hard for some k ≥ 3 is still
open, but we do believe that it is W[2]-complete.

Conjecture 4.15. Determining whether Breaker can win in k moves in a Maker-Breaker positional game
is W[2]-complete.

A consequence of this conjecture is that the Maker-Breaker domination game would also beW[2]-complete.

On the positive side, using the same method as Bonnet et al. [BJS16], together with an argument by
Frick and Grohe [FG01], we obtain the following theorem:

Theorem 4.16. Determining whether Dominator can build a dominating set in k moves in a graph G is
FPT parameterized by k on locally bounded treewidth graph.

86

Proof. The winning condition for Dominator can be expressed as follows:

∃x1∀y1 . . . ∃xk∀u

 ∧
1≤i<j≤k

xj ̸= yi

 ∧
 ∨

1≤i≤k

E(u, xi)


Therefore, according to Frick and Grohe [FG01], this property can be verified in FPT-time on graphs of

locally bounded treewidth, and consequently on bounded treewidth graphs or planar graphs.

Since planar graphs and bounded treewidth graphs have locally bounded treewidth, this directly implies
that determining whether Dominator can win in k moves in a planar graph or a bounded treewidth graph is
FPT.

4.4 Size of a minimum dominating set

We will now focus on the parameterized complexity of the Maker-Breaker domination game considering
graph parameters. One parameter that seems natural is γ, the size of a minimum dominating set of G.
However, this parameter does not provide results in general, as we prove that even for γ = 2, the problem
remains PSPACE-complete.

Lemma 4.17. Determining the winner of the Maker-Breaker domination game is PSPACE-complete, even
restricted to graphs G satisfying γ(G) = 2 (Dominator starts), or γ(G) = 1 (Staller starts).

Proof. The reduction is direct from the Maker-Breaker domination game, which is known to be PSPACE-
complete, when Dominator starts by Theorem 4.1. Let G be a graph.

If Staller starts, we consider the graph G′ obtained from G by adding a universal vertex v0 in G, thus
γ(G′) = 1. Staller has to play v0 first, otherwise Dominator plays it and wins. Therefore, after this move,
the game is played on G′ as it was played on G as it is Dominator’s turn and any move of Dominator will
dominate v0.

If Dominator starts, we consider the graph G′ obtained from G by adding a universal vertex v0 and an
isolated vertex v1 (not connected to v0). Thus γ(G

′) = 2, as {v0, v1} is a dominating set. When Dominator
starts, she has to claim v1 first, otherwise, Staller plays it and isolates it. Now, Staller has to play v0 as
otherwise Dominator plays it in her second move and wins. Therefore, the outcome on G′ is the same as the
outcome on G.

Note that if γ(G) = 1, G has a universal vertex. Thus, if Dominator starts, she can claim the universal
vertex of G and win with her first move.

4.5 The modular-width

As presented in Chapter 4.1, the union and the join of two graphs can easily be handled in the Maker-Breaker
domination game. Together with the Super Lemma, it makes it possible to handle modules. All together,
modules, joins, and unions makes it possible to define the modular-width of graphs. We provide here an
FPT algorithm for the Maker-Breaker domination game parameterized by the modular-width. We recall first
some definitions about modules.

Let us first define what is a module in a graph. Intuitively, a module is a set of vertices behaving the
same regarding the rest of the graph.

Definition 4.18 (Module of a graph). Let G = (V,E) be a graph. A module of G is a set of vertices M
such that, for any x, y ∈M , we have N [x] \M = N [y] \M .

Since any vertex of M has the same neighborhood in G, we say that a vertex x ∈ G \M is adjacent to
M , if it is adjacent to the vertices of M , see Figure 4.5.

87

v1

v2
v3

v7v5

v4

v6

Figure 4.5: M = {v1, v2, v3, v4} is module in the graph. v5 and v7 are adjacent to M . v6 is not.

The modular-width is a graph parameter, introduced by Gajarský et al. [GLO13], that consists in decom-
posing the graph into modules. A, example of modular decomposition is provided in Figure 4.6

Definition 4.19 (Modular-width [GLO13]). We consider a graph G = (V,E) built from using the following
operations:

1. Create an isolated vertex.

2. The disjoint union of two graphs G1 and G2 denoted by G1 ∪G2.

3. The complete join of two graphs G1 and G2 denoted by G1 ⊗G2.

4. The substitution operation with respect to some graph G′ with vertices v1, . . . , vn for graphs G1, . . . , Gn

denoted by G′(G1, . . . , Gn). The graph H = G′(G1, . . . Gn) is the graph with V (H) = ∪
1≤i≤n

V (Gi), and

E(G′) = ∪
1≤i≤n

E(Gi)∪ {(u, v) | u ∈ Gi, v ∈ Gj , (vi, vj) ∈ E(G′)}. Intuitively, this operation consists in

replacing each vertex vi by a Gi which behaves as a module.

A modular-decomposition of G is an expression that constructs G using the above operations only.
The width of a modular-decomposition is the largest number of operands in any occurrence of the operation

(4). The modular width of G, denoted by mw(G) is the minimum integer m such that G can be obtained
from a modular-decomposition with width m.

Note that cographs are exactly the graphs obtained using only (1), (2) and (3) and therefore have modular-
width 0.

Tedder et al. [TCHP08] have provided a linear time algorithm which, given a graph G, compute a modular
decomposition of G of width mw(G).

The notion of module is very strong in the Maker-Breaker domination game. Indeed, when a module is
identified in a graph, depending on the outcome of the game played on the module, next lemma says that
it can be replaced by a module of order at most 3 without changing the outcome of the whole graph. An
example of application of this lemma in provided in Figure 4.7

Lemma 4.20. Let G be a graph, and M be a module of G such that |M | ≥ 3.

• If o(M) = Dom, let H be the graph obtained from G by replacing M by a copy of P2 and adding all
the edges between a vertex of P2 and a vertex v ∈ V (G) \M such that v is adjacent to M in G.

• If o(M) = Stall, let H be the graph obtained from G by replacing M by two independent vertices and
by adding all the edges between any of these two vertices and any vertex v ∈ V (G) \M such that v is
adjacent to M in G.

• If o(M) = N , let H be the graph obtained from G by replacing M by a copy of P3 and adding all the
edges between a vertex of P3 and a vertex v ∈ V (G) \M such that v is adjacent to M in G.

88

v1

v2

v3

v4

v5

v6

v7

(a) A graph G, the big circles are modules, dashed edges between them shows the connection between
the modules.

P4(., ., ., .)

∪ ⊗ ⊗
v7

v1 v2 v3 v4 v5 v6

(b) A modular decomposition of width 4.

Figure 4.6: Example of a modular decomposition

Then G and H have the same outcome.

Proof. Let G = (V,E) be a graph and let M be a module of G. Let H be the graph obtained from G by
replacing M by a P2, a P3 or two isolated vertices, depending on o(M) and according to the statement of
the lemma.

First, we apply the Super Lemma to P2, the two isolated vertices or the two leaves of P3, which is always
possible as they have the same neighborhood in G.

Suppose that Dominator has a winning strategy S in G′. We build a strategy for Dominator, considering
that G is decomposed into two components, M and G \M as follows:

• If o(M) = Dom, then, Dominator plays in G\M following S, and in M following her winning strategy
as a second player, answering always in the same component as Staller, or claiming an arbitrary vertex
if it is not possible.

• If o(M) = N , Dominator follows S in G \M , supposing that if Staller claims in M , it corresponds
to claiming the middle vertex of P3, and if S would make Dominator claim the middle vertex of P3,
she claims the first vertex she would have claimed in M according to her winning strategy in M going
first. Once the first move in M has been made, she always answers in the same component as Staller,
following S in G \M , and her winning strategy in M if she played first in M , or any strategy in M
otherwise.

• If o(M) = Stall, Dominator follows S in G\M , and claims any arbitrary vertex whenever Staller plays
in M .

Following this strategy, Dominator will always dominate the graph:

89

v1

v2
v3

v7v5

v4

v6

(a) M = {v1, v2, v3, v4} is module. Since
{(v1, v3), (v2, v4)} is a pairing dominating set,
it has outcome Dom.

v′1
v′2

v7v5

v6

(b) The reduced graph, where M has been re-
placed by an edge.

Figure 4.7: Reduction of module using Lemma 4.20

• In (G \M) ∩ N [M]. Since |M | ≥ 2, she will always claim at least one vertex x0 of M , and thus any
vertex dominated in G′ by the vertices replacing M will be dominated by x0.

• In G \N [M], by hypothesis, as her strategy was a winning strategy, all the vertices are dominated, as
she followed S.

• In M , if o(M) = Dom or o(M) = N and she has played first in M , she dominates M by following her
winning strategy in it.

• In M , if o(M) = Stall or o(M) = N and she played second in M , according to S, either one leaf of P3

or one of the two independent vertex is not dominated by M . Therefore, it must be dominated by a
vertex of G\M , which dominates all the vertices of M in G as M is a module. Thus, Dominator wins.

Suppose now that Staller has a winning strategy S in G′. We build a strategy for Staller, considering
that G is decomposed into two components, M and G \M as follows:

• If o(M) = Dom, then Staller plays according to S in G \M , always answering in the same component
as Dominator, and plays arbitrary vertices in M .

• If o(M) = N , Staller follows S in G \M , supposing that if Dominator claims in M , it corresponds to
claiming the middle vertex of P3, and if S would make Staller claim the middle vertex of P3, he claims
the first vertex he would have claimed in M according to his winning strategy in M going first. Once
the first move in M has been made, he always answers in the same component as Dominator, following
S in G \M , and his winning strategy in M if he played first in M , or any strategy in M otherwise.

• If o(M) = Stall, Staller follows S in G \M , and his winning strategy in M .

For the same reason as previously, if Staller manages to isolate a vertex of G \M in G′ according to S,
he still isolates it in G since he has played according to S, and necessarily, this vertex has no neighbor in M ,
as otherwise, it would be adjacent to a vertex claimed by Dominator in G′. If o(M) = N or Stall he might
isolate a vertex of P3 or one of the two vertices added instead of M . In this case, he has played following his
winning strategy in M , and all the vertices adjacent to M . Thus, he isolated a vertex of M that is isolated
in G.

Finally, we have proved that G and G′ have the same outcome.

This lemma enables us to treat modules quite easily, since if we can compute the outcome of a module,
we can reduce it. This will provide us an FPT algorithm parameterized by the modular-width.

90

Theorem 4.21. The Maker-Breaker domination game is FPT parameterized by the modular-width of the
graph taken as input.

Proof. Let G = (V,E) be a graph, and let k = mw(G). First, we compute a decomposition of G in linear
time. We embed it in a tree such that, the nodes are the operations (2), (3) and (4), and the leaves are
isolated vertices. Now we compute the outcome of G, starting from the leaves. Let H the graph obtained at
a node of the decomposition as follows:

1. If |V (H)| ≤ 3k, we compute the winner by an exhaustive computation of all the possible games.

2. If H = G1 ∪G2, we compute inductively the outcome of G1 and G2 which must have modular-width
at most k and we return the outcome according to Table 4.1.

3. If H = G1⊗G2 suppose |G1| ≤ |G2|, If |G1| = 1, if o(G2) = N or o(G2) = Dom, we have o(H) = Dom.
Otherwise, we have o(H) = N .

4. If H = G′(G1, . . . , Gp), necessarily, we have p ≤ k. We replace, according to Lemma 4.20, each Gi

having more than three vertices by a P2 a P3 or two isolated vertices depending on its outcome. Then,
we compute o(H) as it has at most 3k vertices.

This algorithm runs in time O ((3k)!n). as any of these four steps can be done in O((3k)!) operations,
and the modular decomposition contains at most n nodes.

Note that this proof does not provide a kernel, and the size of an optimal kernel for the modular width
is still open. However, this lemma has consequences on other parameters. Recall that this results proves
that determining the winner of the Maker-Breaker domination game is also FPT parameterized by the
neighborhood diversity or the vertex cover.

4.6 Size of a minimum feedback edge set

In this section, we provide an FPT algorithm to solve the Maker-Breaker domination game parameterized
by the size of a minimum feedback edge set. The study of this parameter is motivated by the fact that the
Maker-Breaker domination game can be easily solved in forests, and that a feedback edge set is a set of edges
to be removed to obtain a forest. The rest of this section is devoted to proving the following theorem.

Theorem 4.22. The Maker-Breaker domination game has a linear kernel, parameterized by the size of a
minimum feedback edge set, after the first move of Dominator.

Corollary 4.23. Computing the winner of the Maker-Breaker domination game if FPT, parameterized by
the size of a minimum feedback edge set.

Structure of the proof of Theorem 4.22

The proof is composed of several lemmas, we first present here the intuition of the proof by explaining it
step by step. We denote by fes(G) the size of a smallest feedback edge set of G = (V,E). Note that if G is
connected, it satisfies fes(G) = |E| − |V |+ 1.

• After the first move of Dominator, by Lemma 4.6, Staller can play all the neighbors of the leaves in
the graph. Once this lemma cannot be applied, one of the following happens:

– Staller can win with his next move.

– G has bounded size in function of k.

– G has at most one leaf, Dominator has claimed its neighbor.

91

• If fes(G) ≤ k, and G has at most one leaf, G has at most 2k vertices of degree larger than 2 (see
Lemma 4.24). Thus, in G most of the vertices of G are of degree 2, or the size of G is bounded by
some function of fes(G).

• If there is a long path containing only vertices of degree 2 in G, it can be reduced to path containing
at most seven vertices, using Lemma 4.26.

• Once the previous point cannot be applied, the graph has a number of vertices bounded by some
function of fes(G). We can test all the strategies on it.

Structure of graphs of bounded feedback edge set

We first prove that if G has a large order, but a small feedback edge set, once all the leaves of G but one,
and their neighbors have been removed, there are a lot of paths of degree 2.

Lemma 4.24. Let G be a graph, with at most one leaf. Let L be the set of vertices of G of degree 3 or more.
We have |L| ≤ 2fes(G)− 1.

Proof. Up to apply this result to all the connected components of G, suppose G connected. Let H be the
graph obtained by contracting any vertex of degree 2 in G and by removing its leaf (if any). Note that
fes(H) = fes(G) and that the vertices of H are exactly L or L\{x} if x is the neighbor of the removed leaf.
All the vertices of H have degree at least 3, so we have |E(H)| ≥ 3

2 |V (H)|. Since |E(H)| − |V (H)| + 1 =
fes(H), we have by subtracting this equality to the previous one |V (H)| − 1 ≥ 3

2 |V (H)| − fes(H). Finally,
we obtain 2fes(H)− 2 = 2fes(G)− 2 ≥ |V (H)|. As putting back the leaf can at most create one vertex of
degree 3, we have 2fes(G)− 1 ≥ |L|

Shorten long pending paths

A pending path is an induced path v1, . . . vk such that vk is a leaf and for all 1 ≤ i ≤ k − 1, d(vi) = 2. The
next step of the algorithm is to prove that if G has a long pending path, we can reduce it to a smaller one
of same parity. Let G be a graph and u a vertex of G. Let k ≥ 1 be an integer. We denote by G(k, u)
the graph G with a pending path of order k attached to u. More formally, we add k vertices v1, ..., vk to G
and, the edges (vi, vi+1) for i ∈ {1, ..., k} and the edge (u, v1). vk is then the leaf of the pending path, see
Figure 4.8.

G
u

v1 v2 v3 v4

Figure 4.8: A pending path of order 4 attached to graph G. The resulting graph is G(4, u).

To deal with pending paths, we already have Lemma 4.6 to handle them when the extremity and its
neighbor are unclaimed. We now introduce a lemma to shorten paths when Dominator has claimed one
extremity. Note that when Staller claim the neighbor of a leaf in a pending path, Dominator must answer
by playing the leaf and the two vertices can be removed.

Lemma 4.25. Let k ≥ 3, Gk = (G(k, u), D, S) be a position on G(k, u) such that the only vertex claimed
on the vertices {v1, ..., vk} is vk and is claimed by Dominator. If Dominator wins in the position Gk, then
she wins in all the positions Gk′ = (G(k′, u), D \ {vk} ∪ {vk′}, S), for any k′ ≥ 1.

Proof. When k′ < k it is clear : the winning sets for Dominator in Pk are winning sets of Gk′ (when restricted
to the unclaimed vertices). Thus, Dominator can just follow her strategy in the smaller graph. If at some
point she has to claim a vertex not in Gk′ , she just claims any unclaimed vertex.

92

We now prove the result for k′ = k + 1. By induction, it will prove the result for all k′ ≥ k.
Dominator follows her strategy in Gk until an element of X = {v1, ..., vk} is claimed. Note that up to

change the sets D and S, we can assume that it is the first move.

• Assume first that it is Dominator that claims a vertex vj in X. Then, using Lemma 4.8 the game Gk

(resp. Gk+1) is split into two games: Gj and a path with k− j +1 (resp. k− j +2) vertices with only
the two end vertices claimed by Dominator. Since playing vj was an optimal move for Dominator in
Gk, she is winning playing second in the game Gk with vj claimed by Dominator. Therefore, she is
winning second in Gj (by Table 4.1). Since she is also winning second in any path with extremities
claimed by Dominator by Lemma 4.9, she is winning in Gk+1 by claiming vj .

• Assume now that it is Staller that claims a vertex vj in X. If j > 1, then Dominator claims vj−1 (that
is unclaimed by hypothesis). Then as before the game Gk+1 is split into a path with one extremity
claimed by Dominator (where Dominator wins second, by Lemma 4.9) and the game Gj−1 that is
winning for Dominator playing second (since 1 ≤ j − 1 ≤ k and the first remark of the proof). Thus,
the union is winning by Dominator playing second by Table 4.1.

Assume now j = 1: Staller claims v1. If u is unclaimed, Dominator claims u and wins since (G,D ∪
{u}, S) is winning for Dominator playing second, as a subgraph of Gk which had outcome Dom and a
path with one extremity claimed by Dominator, which has outcome D by Lemma 4.9. If u was already
claimed by Dominator, Dominator can answer in G, and we have the same result. Otherwise, if it is
claimed by Staller, then in both games, Dominator has to answer in v2 since k ≥ 3 and v1 need to be
dominated. Then both games are split into two components that are Dominator wins as second player
by hypothesis for G and Lemma 4.9.

Reduction of long induced (non-pending) paths

Next lemma is the one which provide the main reduction rule of our kernelization algorithm. Its application
is depicted in Figure 4.9

Lemma 4.26. Let G be a graph, and u, v be two vertices of G. We denote by Gu,v
k the graph obtained from G

by adding a path on k vertices to G and connecting u and v to the two extremities of the path. If k ≥ 7, then
Gu,v

k and Gu,v
k+2 have the same outcome, even if some vertices of G have already been played by Dominator.

G

Gu,v
9

v1

v2

v3

v4
v5v6

v7

v8

v9
u v G

Gu,v
7

v1

v2

v3
v4

v5

v6

v7
u v

Figure 4.9: Two graphs with the same outcome, using Lemma 4.26.

Proof. Denote by Pk the path attached to u and v, and D the set of vertices already claimed by Dominator
in G.

93

Suppose first, that Dominator has a winning strategy S in Gu,v
k where she has already claimed D. We

prove that Dominator wins in Gu,v
k+2. For her first move, if it is her turn, and while Staller plays in G,

Dominator answers following S in G. If before any vertex is played on Pk+2, Dominator played u or v, by
Lemma 4.8, we can split this vertex. Then, by applying Lemma 4.25, we can remove two vertices on this
path, and we obtain the result directly. Thus, we can consider that u and v are either unclaimed or claimed
by Staller. We consider the first time a vertex has to be played on Pk or is played on Pk+2.

• If S wants Dominator to claim in Pk, we denote the vertices of Pk by v1, . . . , vk, in such a way that
S makes Dominator plays vi with i minimal. Dominator plays vi in Pk+2. Now, by Lemma 4.8, we
can split the path into two, one of length i, and one of length k + 3− i, by removing vi and replacing
it with two leaves claimed by Dominator and connected to its neighbors. Then, by Lemma 4.25, as
either i or k + 3 − i is greater than 3, (since k ≥ 7), we can shorten one of these two paths by two
vertices (or both by one). Then, using again Lemma 4.8, the resulting graph has the same outcome as
if vi was played in Pk, which concludes the proof.

• If Staller claims first in Pk+2, we denote the vertices of Pk+2 by v1, . . . , vk+2, in such a way that Staller
played vi with i minimal. Suppose v1 is connected to u. The following happens depending on the value
of i:

– If i ≥ 2, Dominator, in S has to play a neighbor of vi, otherwise Staller claims either vi−1 or vi+1

and threaten to isolate a vertex with his next move.

Thus, Dominator can claim the same vertex in Pk (either vi−1 or vi+1). Now, by Lemma 4.7,
vi can be removed. Since k ≥ 7, On the path vi+1, . . . , vk+2, we can apply either Lemma 4.25,
if Dominator has claimed vi+1, or Lemma 4.6, if she has played vi−1, which gives the result by
induction.

– If i = 1, Dominator has to claim a vertex in {u, v2, v3}, otherwise Staller can claim v2 and threaten
to isolate v1 by claiming u or v2 by claiming v3 (or wins if he already has claimed u). Thus, after
this move, we can split this vertex using Lemma 4.8. Once again, if Dominator has claimed u, we
conclude by Lemma 4.6. If Dominator has claimed v2 or v3, we conclude by Lemma 4.25.

Suppose now that Dominator has a winning strategy in Gu,v
k+2 where she has already claimed the vertices

of D. We prove that Dominator wins in Gu,v
k . For her first move, if it is her turn, and while Staller plays

in G, Dominator answers following S in G. If before any vertex is played on Pk, Dominator played u or
v, by Lemma 4.8, we can split this vertex. Then, by applying Lemma 4.25, applied on Gu,v

k , we can add
two vertices on this path, and we obtain the result directly. Thus, we can consider that u and v are either
unclaimed or claimed by Staller. We consider the first time a vertex has to be played on Pk+2 or is played
on Pk.

• If S wants Dominator to claim in Pk+2, we denote the vertices of Pk+2 by v1, . . . , vk+2, in such a way
that S makes Dominator plays vi with i minimal. Dominator plays vi in Pk. Now, by Lemma 4.8, we
can split the path into two, one of length i, and one of length k + 1− i, by removing vi and replacing
it with two leaves claimed by Dominator and connected to its neighbors. Then, by Lemma 4.25, as
either i or k+1− i is greater than 3, (since k ≥ 7), we can add two vertices to one of these two paths.
Then, using again Lemma 4.8, the resulting graph has the same outcome as if vi was played in Pk+2,
which concludes the proof.

• If Staller claims first in Pk, we denote the vertices of Pk by v1, . . . , vk, in such a way that Staller played
vi with i minimal. Suppose v1 is connected to u. The following happens depending on the value of i:

– If i ≥ 2, Dominator, in S has to play a neighbor of vi, otherwise Staller claims either vi−1 or vi+1

and threaten to isolate a vertex with his next move.

Thus, Dominator can claim the same vertex in Pk (either vi−1 or vi+1). Now, by Lemma 4.7,
vi can be removed. Since k ≥ 7, On the path vi+1, . . . , vk, we can apply either Lemma 4.25,
if Dominator has claimed vi+1, or Lemma 4.6, if she has played vi−1, which gives the result by
induction.

94

– If i = 1, Dominator has to claim a vertex in {u, v2, v3}, otherwise Staller can claim v2 and threaten
to isolate v1 by claiming u or v2 by claiming v3 (or wins if he already has claimed u). Thus, after
this move, we can split this vertex using Lemma 4.8. Once again, if Dominator has claimed u, we
conclude by Lemma 4.6. If Dominator has claimed v2 or v3, we conclude by Lemma 4.25.

Finally, we proved that if Dominator has a winning strategy on one of Gu,v
k or Gu,v

k+2, she has one on
both, which proves that they have the same outcome.

This lemma enables to shorten any path made up of degree two vertices. We can now prove the main
theorem of this section.

Proof of Theorem 4.22 and Corollary 4.23. Let G be a graph and let k = fes(G). Let n = |V (G)|. Sup-
pose that, Dominator has played once and it is Staller’s turn. By Lemma 4.6, Staller claims all the un-
claimed neighbors of leaves forcing answers to Dominator after each move on the attached leaf. By applying
Lemma 4.7, and by removing the leaves connected to the first move of Dominator, which are now in no
winning sets, we can assume that the resulting graph has at most one leaf, and if so, it has been played by
Dominator.

The resulting graph, by Lemma 4.24, has at most 2k− 1 vertices of degree 3 or more. Now, by applying
Lemma 4.8, we can split the first vertex of Dominator to transform it into a set of leaves, without changing
the degree of any other vertex, nor the number of unclaimed vertices. Now, the only vertices that are already
claimed by Dominator are leaves of pending paths. Thus, by Lemma 4.26 and Lemma 4.25, we can shorten
any path containing only vertices of degree 2 in this graph to a path of order at most 7.

The resulting graph still has a feedback edge set of order k and at most one leaf. Therefore, after removing
the feedback edge set, we obtain a forest with at most 2k vertices of degree at least 3, and at most 2k leaves.
Since paths of vertices of degree 2 have at most length 7, this tree has at most 7(4k − 1) vertices of degree
two. Finally, it has O(k) vertices. So, the given kernel is linear.

Finally, we proved that the game has a linear kernel after the first move of Dominator. Up to consider the
different first moves for Dominator, which only adds a factor n to the complexity, there is an FPT algorithm
using Theorem 1.60.

4.7 Distance to cluster

In this section, we study the complexity of the Maker-Breaker domination game parameterized by the
distance to cluster, which is defined as the number of vertices to remove to transform the graph into a union
of cliques. This parameter is quite natural to study as the outcome on cliques is easy to compute in the
Maker-Breaker domination game.

Lemma 4.27. Let G be a cluster.

• If G has no isolated vertices, we have o(G) = Dom

• If G has a single isolated vertex, we have o(G) = N

• If G has at least two isolated vertices, we have o(G) = Stall

Proof. This result is straightforward since, if K is a clique, it has outcome N if it has order 1, otherwise it
has outcome Dom. The result is then given by Table 4.1.

Theorem 4.28. Deciding whether Dominator wins the Maker-Breaker domination game is FPT for the
parameter distance to Cluster.

Proof. Let X be a set of vertices such that G \X is a cluster. Let k = |X|. Let G1, ..., Gs be the connected
components of G \X. All the Gi are cliques.

We first bound the size of the cliques.

95

u

v

Figure 4.10: A graph G whose distance to cluster is 2: by removing u and v, G becomes a union of cliques.
The signature of the triangle is {∅, {u}, {v}}. The signature of the K4 is {∅, {u}, {u, v}}.

Claim 4.29. Let v1, . . . , vk be vertices of Gi such that N [v1] = · · · = N [vk]. Then o(G) = o(G\{v3, . . . , vk}).

Proof of the claim. Consider one clique Gi. Let Y ⊆ X and let v1, . . . , vk be the vertices of Gi that have
neighborhood exactly Y in X. Then {v1, . . . , vk} is a module of G. By Lemma 4.20, if k ≥ 3 has more than
two vertices, it can be replaced by an edge (since the vis induces a clique, its outcome is Dom), without
changing the final outcome. Thus, all the vis but two can be removed. ⋄

The consequence of this claim is that for 1 ≤ i ≤ s, we can suppose |V (Gi)| ≤ 2k+1, as there is at most
2k different neighborhood in X, and each neighborhood has at most two neighbors in each clique.

The rest of the proof consists in bounding the number of cliques. We define the signature of a clique Gi as
the multiset of the neighborhoods of the vertices of Gi in X, see Figure 4.10. Since at most two vertices have

the same neighborhood, there are at most 32
k

possible signatures (for each of the 2k possible neighborhoods,
either zero, one or two vertices share this neighborhood). Moreover, if Gi and Gj have the same signature,
since we consider multisets, they must have the same number of vertices. For cliques of size not equal to 2,
there are at most two other cliques with the same signature. More precisely:

Claim 4.30. Let Gi be a clique of size ℓ.

1. If ℓ = 1, and if at least two other cliques have the same signature, then all of them but two can be
removed without changing the outcome of G.

2. If ℓ ≥ 3, and if at least three other cliques have the same signature, then all of them but three can be
removed without changing the outcome of G.

Proof of the claim.

1. Assume Gi has size 1, let ui be the unique vertex of Gi and Y its neighborhood in X. Let H be all the
other single vertices having signature {Y }. Then H is a stable set that is a module of G. If |H| > 2,
by Lemma 4.20, it can be replaced by a stable set of size 2.

2. Assume now that Gi has size at least 3. Let C be all the cliques with the same signature as Gi (with
Gi ∈ C). Assume that C contains at least four cliques. Let Y be all the vertices of X connected to at
least one vertex of Gi. We claim that C can be replaced by an edge connected by a join to the set Y .
Let G′ be this new graph and x, y be the vertices of the new edge. We prove that G and G′ have the
same outcome.

96

First note that using the Super Lemma, since x and y have exactly the same neighborhood, we can
assume that Dominator will claim x and Staller will claim y in G′. In particular, all the set Y is
dominated by Dominator.

Assume first that Staller is winning in G′ (going first or second). Then he applies the same strategy
in G ignoring the moves of Dominator in C. Since one can assume in G′ that Dominator will claim x,
the vertex, says z, isolated by Staller in G′ cannot be a vertex among Y ∪ {x, y}. In particular, z is
not connected to any vertex of C in G and thus will also be isolated by Staller in G.

Assume now that Dominator is winning in G′ (first or second). As said before, we can already assume
that x is claimed by Dominator and y by Staller in G′. Let S ′ be the strategy of Dominator in G′

when assuming that x is claimed by Dominator and y by Staller. Let C1, ..., Cm be the cliques of C
(m ≥ 4). For j ∈ {1, ...,m}, let {utj} with t ∈ {1,, ℓ} be the vertices of Cj such that for a fixed t, the
vertices utj have the same neighborhood in X. While Staller is not playing in C, Dominator follows her

strategy S ′. Without loss of generality, one can assume that u11 is the first vertex claimed by Staller
in C. Then Dominator claims u12 and thus dominates the whole clique C2. After that, Dominator goes
on following S ′ outside C and follows a pairing strategy P in C with the following pairs:

(a) For t ∈ {2, ..., ℓ− 2}, (ut1, ut2).
(b) (uℓ−1

2 , uℓ−1
3) and (uℓ2, u

ℓ
4)

(c) (uℓ−1
1 , uℓ1)

(d) For j ∈ {3, ...,m}, (u1j , u2j).

The pairs from items (a) and (b) ensure that at least one uti is claimed by Dominator for each t while
items (c) and (d) ensure that at least one vertex in each clique Cj is claimed by Dominator. Note that
the vertices of C that are not paired can be ignored as they will be dominated by (c) and (d), and
cannot dominate new vertices.

This way, Dominator will dominate all the vertices of C and will dominate all the vertices of Y . All
the other vertices of G are present in G′ and dominated by another vertex than x. Thus, Dominator
will dominate the whole graph G. ⋄

We now consider the cliques of size 2. We prove that if there are enough cliques of size 2 with the same
signature, then we can remove one of them without changing the outcome. By repeating this argument, it
proves that we can assume that the number of cliques of size 2 with the same signature is bounded by a
function of k.

Claim 4.31. Let f(k) = (2k + 3)32
k

+ 2. Let X1, X2 ⊆ X. Assume that G has more than f(k) cliques of
size 2 with the same signature (X1, X2). Let G′ be the graph G with one of them removed. Then G and G′

have the same outcome.

Proof of the claim.
Let C be the set of cliques of size 2 with signature (X1, X2). Let C1, ...C|C| be the cliques of C. We assume

that |C| > f(k). For j ∈ {1, ..., C}, let uj and vj be the two vertices of Cj such that all the uj (respectively
all the vj) have neighborhood X1 (resp. X2). Let G

′ be the graph where the clique C|C| is removed from G.
We prove that G and G′ have the same outcome. If Dominator wins in G′ (first or second), then she wins
in G using a pairing strategy on C|C| and the same strategy she was using before on the rest of G.

Thus assume that Staller wins in G′. Let S ′ be a strategy for Staller in G′. We want to prove that Staller
wins in G.

We simulate a game in G until f(k) − 1 cliques of C have at least one vertex claimed by a player with
Staller that follows S ′ in G. Without loss of generality, we can assume the f(k)− 1 cliques played are C1 to
Cf(k)−1.

We observe the following facts:

97

1. If Dominator has claimed one vertex ui and one vertex vj , then by the Super Lemma, one can assume
that for all the empty cliques of C there will be one vertex claimed by Staller and one by Dominator,
since for all k /∈ {i, j} and all set D of vertices containing ui and vj , we have that D ∪ {uk} is a
dominating set if and only if D∪{vk} is. Then the clique CC can be removed, and we obtain the graph
G′ where Staller will win by hypothesis.

2. If Dominator is claiming two vertices in C with no vertices claimed by Staller in C in between, then
Dominator has interest to claim two vertices ui and vj by Lemma 1.78, and then we are back to Case 1.

3. Assume that Dominator has already claimed a vertex vi. After this move, if Staller claims a vertex
uj and immediately after Dominator claims vj then the clique Cj can be removed: Dominator does
not dominate any new vertex except uj and vj and thus the resulting game is a configuration of G′

on which Staller wins. If Dominator claim at some point vj , then it means that vj had no unclaimed
neighbor in X2 nor neighbor claimed by Dominator otherwise it is better for Dominator to claim any
neighbor of vj by Lemma 1.78. In particular, when Staller claims a vertex ut after that, Dominator
has to answer vt immediately, otherwise Staller isolates a vertex by playing it, and then we can remove
the two vertices.

4. Thus one can consider that Dominator has only claimed the vertex v1 in C and that Staller claims all
the vertices u1 to uf(k)−2. When Staller was claiming a vertex uj , Dominator answered outside C. We
will now count the number of optimal moves outside C. Dominator could claim one of the k vertices

of X. For the vertices outside X, there are at most 32
k

different signature. For each signature not
corresponding to a clique of size 2, there are at most 2k + 3 vertices that are vertices with distinct
neighborhood in X or last vertex of a clique that need to be dominated (at most one for each class).
For cliques of size 2, once Dominator has claimed the two vertices with distinct neighborhood, from
what precedes, she will never claim a vertex in a clique except if Staller is claiming a vertex and threats
to isolate a vertex. Thus, when Staller is claiming a vertex of C, Dominator will play at most twice in

each class of cliques of size 2. Therefore, in total there are at most (2k + 3)32
k

= f(k)− 2 interesting
vertices. Once all these vertices have been claimed by Dominator, she should answer in C directly after
the next move of Staller. Since there is still a vertex uf(k)−1 unclaimed she can claim it, and we are
back to Case 1. ⋄

To conclude the proof, We proved that, for each signature, we can reduce the graph G to a graph in

which at most f(k) cliques share a signature. As there are at most 32
k

signatures in total, and as each clique

has at most 2k+1 vertices, we can reduce the graph to a kernel having f(k)32
k

2k+1 = O(32
k+2

) vertices.
We recall again, that, by Lemma 1.60 having a kernelization algorithm is equivalent to be FPT. Therefore,

the Maker-Breaker domination game is FPT parameterized by the distance to cluster.

4.8 Further work

We obtained several results for the Maker-Breaker domination game, parameterized by different graph pa-
rameters. We studied the distance to cluster as clusters are graphs in which Dominator wins easily, we can
wonder what happens to other classes of graphs where the winner can be computed in polynomial time. For
instance, considering the feedback vertex set instead of the feedback edge set would give a distance to forests
in terms of number of vertices and not edges. This parameter seems a bit difficult to handle, since we cannot
use it to bound the number of vertices of large degree, as we did for the feedback edge set. A first step could
be the distance to union of stars, as stars are graphs on which Staller wins easily.

Concerning the modular-width, the proof provided here is quite general but does not provide us a kernel.
Thus, on the one hand, one could try to obtain a kernel for this parameter. On the other hand, since
this method mostly relies on an application of the Super Lemma, it would be interesting to try to find
lemmas similar to Lemma 4.20 for other positional games, as it would imply that several games are FPT
parameterized by the modular-width, which would be stronger than the neighborhood diversity.

98

Moreover, among the parameterized results obtained for the H-game in the previous chapter, we never
considered graph parameters. It would be interesting to consider some of them, such as the feedback edge
set, which would be pertinent since we managed to obtain several results on trees.

The W[2]-hardness of Maker-Breaker games parameterized by the number of moves required for a win of
Breaker, obtained is Section 4.3 almost completes the result of Bonnet et al. [BGL+17] when parameterized
by the number of moves required for Maker. However, we only proved the hardness here, and proving that
this parameterized game belongs to W[2] would be a good result to complete this chapter.

Conjecture 4.32. Determining the winner of a Maker-Breaker game parameterized by the number of moves
required for Breaker to win is W[2]-complete1.

Finally, in this study, we focused on Maker-Breaker games, and we did not provide results for other
conventions. Since Bonnet et al. proved that the general Avoider-Enforcer is co-W[1]-complete parameterized
by the number of moves required for Avoider to win, and since the Avoider-Enforcer and Maker-Breaker
games are quite similar, we make the following conjecture:

Conjecture 4.33. Determining the winner of an Avoider-Enforcer game parameterized by the number of
moves required for Enforcer to win is co-W[2]-hard.

1We proved this conjecture in [BHOP] after the redaction of the manuscript

99

Chapter 5

Maker-Maker domination game

Despite the fact that Maker-Maker games are more natural than Maker-Breaker games, they are harder to
handle. Therefore, more games have been introduced in Maker-Breaker convention, and only few results are
known about the Maker-Maker convention on them. This is especially the case for the domination game,
introduced by Duchêne et al. [DGPR20]. Our main result is that, similar to the Maker-Breaker convention,
the Maker-Maker domination game can be solved in polynomial time in forests. However, unlike the result
provided in Maker-Breaker, which proves that if Maker wins, she can win with a pairing strategy, here we
have a much harder algorithm and most of this chapter will consist of proving it. We refer the reader to the
previous chapter for a summary of the results about the Maker-Breaker domination game.

In Section 5.1, we present some results from Maker-Breaker that can be applied to the Maker-Maker
convention. Then, in Section 5.2 we present some useful results, that will help us to reduce some instances,
and we introduce the notion of traps on which most of the proof relies. In Section 5.3, we compute the
outcome on paths and cycles. Next, in Section 5.4, we present the main theorem and introduce favorable
components, which are the main tool in the proof of the algorithm. In Section 5.5, we give the proof of the
correctness of the algorithm.

This work was a collaboration with Eric Duchêne, Arthur Dumas, Aline Parreau and Eric Remila. It
was published in Discrete Applied Mathematics [DDO+24]

Notations

Since several proofs in this chapter require considering positions with different players starting, we introduce
the following notations:

• If P = (G,VA, VB) is a position, we denote by (P,A) (resp. (P,B)) the pointed position, consisting in
considering the game on P when it is Alice’s turn (resp. Bob’s turn).

• If P is a position and t a player, we denote by o(P, t) the outcome on the pointed position (P, t). We
recall that, in Maker-Maker games, by Lemma 1.14, we have o(P, t) ∈ {A,D} if the moves are made
optimally. Therefore, it may happen that moves of Alice are forced if she tries to dominate but not
she tries to draw. By considering these moves, Bob can dominate before Alice. If it happens, it shows
that Alice has no optimal strategy, and therefore we state that the outcome is D instead of B.

• If P = (G,VA, VB) is a position, and u, v are two unclaimed vertices of P , we denote by Pu,v the
position (G,VA ∪ {u}, VB ∪ {v}), i.e. the position obtained after Alice has claimed u and Bob has
claimed v.

• Two positions P and P ′ are said to be equivalent if for any t ∈ {A,B}, o(P, t) = o(P ′, t). Two pointed
positions (P, t) and (P ′, t) with the same first player are said to be equivalent if o(P, t) = o(P ′, t).

• We order outcomes, stating that A > D. With this convention, a pointed position (P, t) is better for
Alice (respectively Bob) than a pointed position (P ′, t′) if o(P, t) ≥ o(P ′, t′) (respectively o(P, t) ≤
o(P ′, t′)).

100

5.1 Comparison between Maker-Breaker and Maker-Maker con-
ventions

In this section, we first present the results from the Maker-Breaker domination game that have applications
in the Make-Maker convention.

5.1.1 General complexity

Among the results presented by Duchêne et al. [DGPR20], there is the PSPACE-completeness of the game,
presented in Theorem 4.1. We use this result to prove that it is also PSPACE-complete in Maker-Maker
convention.

Theorem 5.1. Computing the winner of the Maker-Maker domination game is PSPACE-complete even if G
is bipartite or split.

Proof. First note this problem is in PSPACE, by application of Lemma 2.2 from Schaefer [Sch78], since there
are most |V | turns and during each turn, at most |V | moves are available.

We prove that it is PSPACE-hard by a reduction from Maker-Breaker domination game, which is proved
to be PSPACE-hard from Theorem 4.1.

We do the reduction as follows. Let G = (V,E) be a graph with Staller starting. Consider G′ =
(V ∪ {v0}, E) with v0 a new isolated vertex. Note that the property of being split or bipartite is maintained
by this operation. We prove that Dominator wins the Maker-Breaker domination game on G going second,
if and only if Alice wins the Maker-Maker domination game on G′.

Suppose first that Dominator has a winning strategy S on G going second. We define the following
strategy for Alice on G′: first claim v0, then apply S. By hypothesis, this strategy is a winning strategy for
Dominator, thus, the set of vertices claimed by Alice at the end of the game will dominate the graph. As
Bob cannot dominate v0, he cannot dominate before her, thus Alice wins.

Reciprocally, suppose that Staller has a winning strategy S on G going first. We define the following
strategy for Bob on G′. If Alice does not claim first v0, Bob claims it. Alice cannot dominate v0 any longer,
so the outcome is D. Otherwise, apply S. By hypothesis, this strategy is a winning strategy for Staller, thus,
the set of vertices claimed by Alice at the end of the game will not dominate G, and the outcome is D.

5.1.2 Pairing strategies

Pairing dominating sets have also been introduced, see Definition 4.2, as they are a sufficient condition
for a win of Dominator. Here, in Maker-Maker, this is no longer true, and a counterexample is given in
Section 5.3. However, Lemma 4.3 can be adapted to graphs with a pairing dominating set of the same size
as their smallest dominating set of G.

Lemma 5.2. Let G be a graph. If G has a pairing dominating set of size γ(G), then Alice has a winning
strategy in G.

Proof. Let G be a graph. Suppose G has a pairing dominating set of size γ(G). By claiming her γ first
moves in it, and claiming in the same pair as Bob if Bob claims a first vertex in a pair, Alice can dominate
in γ moves. Bob cannot dominate before by definition of γ(G). Therefore, Alice has a winning strategy in
G.

Corollary 5.3. Let G be a connected cograph. We have o(G) = A.

Proof. This result is straightforward as any connected cograph either has a universal vertex, and Alice wins
by claiming it, or it has a pairing dominating set of size two and has γ(G) = 2.

101

Figure 5.1: Example of a graph where Bob ensures a Draw in Maker-Maker, but if we remove any leaf with
its neighbor, Alice wins.

Even if connected cographs are solved easily in Maker-Maker, dealing with disconnected graphs is not
easy in the Maker-Maker convention, as Table 4.1 cannot be applied in Maker-Maker games. Actually, we
did not manage to determine the outcome of a general cograph, and we let it as an open problem. Note
that determining the outcome for cographs in Maker-Breaker convention is polynomial (see [DGPR20]), but
finding the minimum number of moves needed by Dominator to win is surprisingly open [GIK19].

We now generalize the notion of pairing dominating sets to the notion of A-pairing, which consists in
pairing strategies on some positions of the game, i.e. with some vertices already claimed. We do not introduce
B-pairing, since Bob is not supposed to win in a Maker-Maker game.

Definition 5.4. Let G = (V,E) be a graph and P = (G,VA, VB) a position. A set of disjoint pairs of
unclaimed vertices P = {(u1, v1), ..., (uk, vk)} of V is a A-pairing of position P if for each transversal T of
P, the set VA ∪ T dominates V .

5.1.3 Removing leaves

The key ingredient to solve trees in the Maker-Breaker convention was to remove leaves using Lemma 4.6.
The situation is a quite different in the Maker-Maker convention. Indeed, Lemma 4.6 is not true anymore
and one cannot reduce trees as in Maker-Breaker convention. Indeed, leaves are still playing an important
role as shown by Figure 5.1. Actually, one can prove that it is always optimal for Bob to claim the unique
neighbor of a leaf:

Lemma 5.5. Let P = (G,VA, VB) be a position with an unclaimed leaf ℓ for which its unique neighbor u is
also unclaimed. Then o(P,B) = o(Pℓ,u, B)

Proof. Suppose first that (Pℓ,u, B) is D. Bob can, in (P,B), claims u first. Then ℓ has no unclaimed neighbor.
Thus, Alice must claim it otherwise Bob claims it and isolates it. Thus, the game is now (Pℓ,u, B) that is D
by hypothesis. Thus, (P,B) is D.

We prove the other implication by contraposition. Suppose (Pℓ,u, B) has outcome A. Let S be a winning
strategy for Alice in (Pℓ,u, B). We consider a strategy S ′ for Alice in (P,B) defined as follows:

• If Bob claims a vertex in {ℓ, u}, Alice claims the other one.

• Otherwise, Alice claims according to S (ignoring the moves on ℓ and u) until she dominates all the
vertices of V \{ℓ, u}. If u, ℓ have been claimed at this moment, either Bob has claimed u and Alice
ℓ, and she wins since the strategy played is the same as S ′, or Bob has claimed ℓ and Alice u, which
dominates more vertices than ℓ. Therefore, in both cases, her winning strategy in S ′ ensures her that
she dominates first. Otherwise, when she dominates all the vertices of V \{ℓ, u}, Bob does not dominate
in the game played on (Pℓ,u, B). Thus, claiming in {u, ℓ} does not make him dominate G and if he

102

does not claim in {u, ℓ}, he does not dominate ℓ. Therefore, by claiming at her next move a vertex in
{ℓ, u}, Alice wins.

Thus, Alice has a winning strategy in (P,B), finishing the proof.

In other words, after the first move of Alice, one can always assume that Bob has claimed all the vertices
that are adjacent to leaves of G, and that Alice has answered by claiming all the leaves. This will be
particularly important when dealing with trees.

5.2 Preliminaries

We can now focus on new results in Maker-Maker convention. In this section, we introduce several lemmas
and structure on which the proof for forest relies.

5.2.1 Union of components

First, we consider union of components, even if the Maker-Breaker results from Table 4.1 cannot be applied
here. The first results which is quite natural states that a component already dominated by both players
can be removed without changing the outcome.

Observation 5.6. Let P = (G,VA, VB) and P
′ = (G′, V ′

A, V
′
B) be two positions on disjoint graphs. Assume

that V ′
A and V ′

B are dominating sets of G′. Then P ∪ P ′ and P are equivalent.

One cannot in general determine the outcome of a position P ∪ P ′ knowing the outcome of P and P ′.
However, when both positions have outcome A when Bob starts, their union still have the outcome A:

Observation 5.7. Let P and P ′ be two positions such that o(P,B) = o(P ′, B) = A. Then we have
o(P ∪ P ′, B) = A.

Proof. Alice follows her strategies responding as the second player in both P and P ′ until she dominates one
of the component, say P . Then she just plays in P ′ following her strategy. She might claim elements of the
board in P ′ several times in a row (if Bob goes on playing in P), but by Lemma 1.15, it is always better for
Alice to play first than second. Thus, she will be able to dominate P ′, before Bob does.

5.2.2 Splitting the game

When considering a position, it could be useful to decompose it into several disjoint games, as it was done in
the previous chapter with Lemma 4.8. To do such a decomposition, the winning sets for both players should
be the same. This is the case when a cut set is completely claimed and dominated by both players.

Lemma 5.8. Let P = (G,VA, VB) be a position. Assume V (G) can be partitioned into three sets V1, V2, X
such that:

• There are no edges between V1 and V2.

• All the vertices of X have been claimed: X ⊆ VA ∪ VB.

• The vertices in X are already dominated by VA ∩X and VB ∩X.

Let P1 and P2 be the subpositions of P induced by V1 ∪X and V2 ∪X respectively (vertices of P1 and P2 are
disjoint). Then the position P and the position P1 ∪ P2 are equivalent.

Proof. We consider the trivial bijective map f between the unclaimed vertices of P and P1 ∪ P2. Let S be
a set of unclaimed vertices of P and t ∈ {A,B}. Assume first that S is a winning set of P for Player t
Let S1 = f(S) ∩ V1. We prove that S1 is a winning set of P1 for Player t. Let u be a vertex of P1 and
u′ = f−1(u). Either u′ ∈ X and thus is dominated by a vertex of Vt ∩X in P and thus u is still dominated

103

in P1. Or u′ /∈ X, and then u′ is dominated by some vertex s of S ∪Vt in P . Since u′ /∈ X and X is a cutset,
s should be in V1 ∪X and f(s) is still in S1 ∪ Vt. Similarly, we can prove that S2 = f(S) ∩ V2 is a winning
set of P2 for Player t, and thus f(S) is a winning set of P1 ∪P2 for Player t. The reverse is easier: the union
of two winning sets in P1 and P2 is clearly a winning set of P . Therefore, Observation 1.75 applies and the
two positions are equivalent.

G1 G2

A

A

B

(a) A graph G. The three vertices depicted are a cut
set and is fully played

G1

A

A

B
G2

A

A

B

(b) The same graph after a cut on these three vertices

Figure 5.2: A cut in a graph, using Lemma 5.8

This result will be particularly useful in forests, since any vertex of a tree that is not a leaf is a cut vertex.
Therefore, each time Alice and Bob claim two adjacent vertices that are not leaves, we can apply this lemma
and cut the tree in which they were playing in into smaller ones.

5.2.3 Traps

We will frequently use the notion of trap that is defined in this section. Roughly speaking, an A-trap
(respectively B-trap) is a vertex of a game position such that, if it is not claimed by Alice (resp. Bob) by
the end of the game, it means that Alice (resp. Bob) will never build a dominating set. Formally, traps can
be defined as follows:

Definition 5.9. Let P = (G,VA, VB) be a position of the game. An A-trap (respectively B-trap) is an
unclaimed vertex v such that there exists a vertex w with N [w] ∩ V \VB = {v} (resp. N [w]\VA = {v})

In this definition, v corresponds to the vertex that must be claimed, and w to the vertex that will not
be dominated if v is not claimed. Note that we may have v = w. Figure 5.3 illustrates the notion of traps.

The next lemma shows that if there is an A-trap in a position, one can consider that the next player will
claim it immediately.

Lemma 5.10. Let P be a position of the game and v be an A-trap of P . Claiming v is an optimal move for
both players. Moreover, o(P,B) = D.

Proof. Let w such that N [w]∩V \VB = {v}. Suppose it is Bob’s turn. By claiming v, Bob isolates the vertex
w as now N [w] ⊆ VB . Therefore, Alice cannot dominate w any longer and the outcome is D.

w

A

v

vB B

B

B

Figure 5.3: On the left, v is a B-trap and w may be isolated; on the right v is an A-trap

104

If it is Alice’s turn, if she does not claim v, Bob claims it and once again isolates w. Therefore, v is forced
for Alice. Thus, v is an optimal move.

Corollary 5.11. Let P be a position of the game. If there exist two A-traps v1 and v2 of P such that
v1 ̸= v2, then o(P,A) = o(P,B) = D.

Proof. Since there are two distinct A-traps, the two vertices w1 and w2 that might be isolated are necessarily
distinct (otherwise v1 and v2 would both be in their neighborhood, contradicting the definition of a trap).
Hence, even if Bob is not the first player, he will be able to claim in one of the two traps and hence isolate
either w1 or w2.

The next lemma proposes another example of a forced move for Alice when there exists an unclaimed P5

in a position as a subgraph.

Lemma 5.12. Let (P,B) be a pointed position of the game with P = (G,VA, VB). If there exists a path
G′ = (v1, v2, v3, v4, v5) such that G′ is a subgraph of G with V (G′) ∩ (VA ∪ VB) = ∅ and v2, v3, v4 of degree
2, then if Bob claims v3, Alice is then forced to answer on v2 or v4.

Proof. If Bob claims v3, then if Alice answers elsewhere than on v1, v2 or v4, Bob claims his second move on
v2 and creates two A-traps in v1 and v4. Indeed, since the vertices v2 and v3 are of degree 2, there remains
only one way for Alice to dominate v2 (i.e. by claiming v1) and v3 (i.e. by claiming v4). By corollary 5.11,
the resulting position has outcome D. If Alice claims v1, then Bob claims v4 and by symmetry creates two
A-traps equivalent to the previous case.

Traps play a strong role in the computation of optimal moves, as they can quite often provide simple
strategies. For instance, if Alice can prevent Bob to dominate the graph, A-pairings are then enough for
Alice to win. This can be used in particular where there are some B-traps in the game.

Lemma 5.13. Let P be a position with a B-trap and an A-pairing. Then, we have o(P,A) = A.

Proof. Let P be a position containing a B-trap v and an A-pairing S. Alice playing first can claim v. Now,
Bob cannot dominate G anymore. Therefore, by following a pairing strategy using S, Alice will claim a
dominating set, by definition of A-pairings. Thus, she will dominate the whole graph and win.

Lemma 5.14. Let P be a position with two B-traps v and v′ and an A-pairing that contains nor v nor v′

in P . Then, we have o(P,B) = A.

Proof. Alice follows a pairing strategy using S ∪ {v, v′}. Bob cannot dominate since she will claim either
v or v′ and thus, there will be a vertex not dominated by Bob. She will dominate the graph since she will
claim a transversal of S.

5.3 Path and cycles

In this section, we consider paths. In a tree, the structure of the positions obtained after some moves will be
basically union of paths where the extremities are claimed. Thus, we first deal with these paths and derive
some general results on them that will help us to solve paths, and also cycles and forest later.

5.3.1 Bounded baths

A bounded path is a path on at least four vertices where the four vertices at its extremities (the two leftmost
and the two rightmost) are already claimed by Alice and Bob in such a way that the four vertices are already
dominated by both players.

Definition 5.15. A bounded path of length n is a position (G,VA, VB) such that:

• G is a path (v−1, v0, v1,, vn, vn+1, vn+2);

105

• the unclaimed vertices are exactly vertices v1 to vn;

• exactly one vertex among {v−1, v0} (respectively {vn+1, vn+2}) is in VA, the other being in VB.

According to this definition, the knowledge of the label of v0 and vn+1 is sufficient to deduce the label of
v−1 and vn+2. Therefore, for t, t′ in {A,B}, we will denote by [tont′] the bounded path of size n such that
v0 ∈ Vt and vn+1 ∈ Vt′ . See Figure 5.4 for an illustration of [Ao5A] and [Bo3A].

B A A B

[Ao5A]

A B A B

[Bo3A]

Figure 5.4: The bounded paths [Ao5A] and [Bo3A].

In some situations, bounded paths can be considered as a neutral structure that preserves the outcome
when adjoined to another position. The next lemma illustrates a first case in which this may occur. It will
also lead to a natural resolution of paths.

Lemma 5.16. For any position P and any integer n, o(P,B) = o(P ∪ [AonB], B).

Proof. Let P = (G,VA, VB) be a position. We do the proof by induction on the number of unclaimed vertices
in P ∪ [AonB]. First note that if n ≤ 1, the result is true since [AonB] is already dominated by both players.
Hence, by Observation 5.6, the result is true when the number of unclaimed vertices is at most 1.

Now assume there are at least two unclaimed vertices and n ≥ 2. Suppose first that (P,B) = D. In this
case, Bob starts by claiming vn−1 in P ∪ [AonB] creating an A-trap in vn. By Lemma 5.10, Alice has to
answer vn. By induction hypothesis o(P ∪ [Aon−2B], B) = D, which ensures that o(P ∪ [AonB], B) = D.

Now assume that (P,B) has outcome A, and let S be a winning strategy for Alice in this pointed position.
We give a strategy for Alice in (P ∪ [AonB], B). Let vB be the vertex claimed by Bob in (P ∪ [AonB], B).
Alice answers as follows:

• If vB ∈ V (G) and if Alice does not dominate P , she claims the same vertex vA she would have
answered following S if Bob had claimed vB in (P,B). The resulting position has two vertices less,
and has outcome A by induction hypothesis.

• If vB ∈ V (G) and Alice already dominates P , we necessarily have n ≥ 2, otherwise, she would already
have won. She claims v2. The resulting position is better than (P ∪ [AoA]∪ [Aon−2B], B), which itself
is better than ([AoA] ∪ [Aon−2B], B), as Alice already dominates P . Thus, by induction hypothesis
applied with P ′ = [AoA], which is not dominated by Bob, the position has outcome A.

• If vB is a vertex of [AonB], then vB corresponds to some vertex vk, with k ∈ {1, . . . , n}. If k = n,
Alice answers vn−1. Otherwise, she claims vk+1. Note that if k = n, the position obtained is better for
Alice than the one obtained by k = n− 1 (since she dominates a superset of vertices). Therefore, and
without loss of generality, we will assume that k < n. By Lemma 5.8, the resulting position is then
equivalent to (P ∪ [Aok−1B]∪ [Aon−1−kB], B) which has less unclaimed vertices than the original one.
By induction hypothesis applied twice, it has the same outcome as (P ∪ [Aok−1B], B), which also has
the same outcome as (P,B), which has outcome A by hypothesis.

This analysis ensures that o(P ∪ [AonB], B) = A, since for each claim of Bob, there exists an answer of Alice
leading to a position on which Alice wins.

The next lemma presents another situation where the adjunction of some bounded paths with particular
constraints does not change a winning outcome for Alice.

Lemma 5.17. Let P = (G,VA, VB) be a position, let n be an integer such that n ̸≡ 0 mod 3 and let n′ be
an integer such that n′ ≡ 0 mod 2. Then if o(P,B) = A, then o(P ∪ [AonA] ∪ [Bon

′
B], B) = A.

106

Proof. We prove this result by induction on the number m of unclaimed vertices of P ∪ [AonA] ∪ [Bon
′
B].

For initialization, if m = 1, then P has no unclaimed vertices, n = 1 and n′ = 0. Thus, Alice dominates
P ∪ [AonA] ∪ [Bon

′
B] and the result is true, by definition.

Assume now that m ≥ 2, If Alice dominates (P ∪ [AonA] ∪ [Bon
′
B]) (which implies that n ≤ 2 and

n′ = 0) then the result is true, by definition. Otherwise, we have to prove that, for each vertex x claimed
by Bob, there exists an answer y for Alice such that o(P ∪ [AonA] ∪ [Bon

′
B], B) = A, the pointed position

obtained after the two claim has outcome A.
Denote by (u1, . . . , un) the unclaimed vertices of [AonA] and by (v1, . . . , vn′) the unclaimed vertices of

[Bon
′
B]. We consider all the possible moves for Bob.

• If Bob claims u1 or u2 in [AonA] and n ≤ 2, we consider two subcases. If n′ = 0, then Alice dominates
[AonA]∪ [Bon′

B], which obviously gives the result. If n′ ≥ 2, Alice claims v1. By Observation 5.6, the
resulting game is equivalent to P ∪ [Aon

′−1B], which is equivalent to P by Lemma 5.16.

• If Bob claims u1 or u2 in [AonA] and n ≥ 4, by Lemma 1.78, we can suppose he claims u2. then Alice
claims u3. Thus, the resulting position is equivalent to P ∪ [Aon−3A]∪ [Bon′

B], which gives the result
using the induction hypothesis. The case where Bob claims un or un−1 is symmetric.

• If Bob claims a vertex uk in [AonA] with k /∈ {1, 2, n − 1, n}, Alice answers by claiming a vertex ui
with i ∈ {k− 1, k+1} such that the resulting component is [AojA]∪ [Aoj′B] with j ̸≡ 0[3]. Note that
since n ̸≡ 0[3], this vertex always exists. By Lemmas 5.8 and 5.16, the resulting position is equivalent
to P ∪ [AojA] ∪ [Bon

′
B], which gives the result using the induction hypothesis.

• If Bob claims some vertex vk in [Bon
′
B], Alice answers by claiming a vertex vi with i ∈ {k−1, k+1} such

that the resulting component is [BojB]∪[Aoj′B] with j ≡ 0[2]. Note that as n′ ≡ 0[2], this vertex always
exists. By Lemma 5.16 and Lemma 5.8, the resulting position is equivalent to P ∪ [AonA] ∪ [BojB],
which gives the result using the induction hypothesis.

• If Bob claims a vertex x in P , we consider two subcases. If Alice does not dominate G yet, she claims
the vertex she would have claimed as an answer to x in her winning strategy in P . The resulting
position has two vertices less, which gives the result using the induction hypothesis.

If Alice already dominates G, and n′ ≥ 2, then Alice claims v1 in [Bon
′
B], turning it into [Aon

′−1B]. By
Lemma 5.16, the game is now equivalent to P ∪[AonA], and Alice already dominates G, so by induction
hypothesis, it is a winning position for her. For n′ = 0 and n ≥ 4 (cases where n ≤ 2 are trivial), then
Alice claims u2. The resulting position is better for Alice than the position P ∪ [AoA] ∪ [Aon−2B],
which, by Lemma 5.16, is equivalent to P ∪ [AoA] and therefore is a winning position for Alice.

We finish this subsection by proving that bounded paths [BonB], where n is odd, and [AonA], when
n ≡ 0 mod 3, are not good for Alice when Bob starts. The first one is natural and give a condition for
a draw whatever the rest of the position is. The second one is more surprising. Here Bob obtains a draw
mostly by threatening Alice to dominate before her. Thus, one cannot add any position and maintain a
draw.

Lemma 5.18. For any position P and any odd integer n, o(P ∪ [BonB], B) = D.

Proof. We prove the result by induction on n. If n = 1, there is an A-trap: by Lemma 5.10, o(P∪[BoB], B) =
D. Now, let n ≥ 3. Bob claims v2 which forces Alice to claim v1. The position is then equivalent to
(P ∪ [Bon−2B], B) which has outcome D by induction.

Lemma 5.19. For any positive integer k, o([Ao3kA], B) = D.

Proof. We prove the result by induction on k.
If k = 1, Bob claims v2 and directly dominates [Ao3A]. Thus, o([Ao3A], B) = D.
If k = 2, Bob claims v2. If Alice does not answer in {v1, v3, v4}, Bob claims v3 at his second turn and

create two A-traps in v1 and v4 which ensures a draw. Thus, Alice should claim a vertex among {v1, v3, v4}

107

and does not dominate the graph at her first claim. Then Bob can claim v5 and dominates the graph. Hence
o([Ao6A], B) = D.

Assume now that k ≥ 3 and that the result is true for any positive k′ < k. Consider the position
([Ao3kA], B). Bob claims v5 at his first turn. By Lemma 5.12 applied on (v3, v4, v5, v6, v7), Alice should
answer on v4 or v6. If she claims v4, then by Lemma 5.8, the position is equivalent to the position ([Ao3A]∪
[Bo3k−5A], B), which is equivalent, by Lemma 5.16 to ([Ao3A], B) which has outcome D.

If she claims v6, in the same way, the position is equivalent to ([Ao4B] ∪ [Ao3(k−2)A], B), which is
equivalent to ([Ao3(k−2)A], B) which has outcome D by induction.

5.3.2 Paths

Lemma 5.16 can be used to prove that Alice always wins on paths.

Theorem 5.20. Let Pn be the path of length n. Then o(Pn) = A.

Proof. Let v1, ..., vn be the vertices of the path. In n ≤ 3, then Alice wins at her first turn, so we can assume
that n ≥ 4. Alice starts by claiming v2. By Lemma 5.5, we can assume that Bob claims vn−1 and Alice
answers by claiming vn. Let (P,B) be the actual pointed position of the game. Using Observation 1.75, and
since v1 should be in any winning set of Bob, this position is equivalent to the position ([AoA]∪[Aon−4B], B).
By Lemma 5.16, o([AoA] ∪ [Aon−4B], B) = o([AoA], B) = A, which ensures that o(G) = A.

When playing in the Maker-Breaker convention, note that this result implies that Dominator also has a
winning strategy on any path playing first. This result was already known since [DGPR20], but the strategy
developed here is different from the other one.

5.3.3 Cycles

The case of cycles in the Maker-Maker convention is more subtle than for the Maker-Breaker convention,
where Dominator always wins. More precisely, we will show that there are infinitely many A and D outcomes
that depend on the size of the cycle modulo 3.

From now, we will denote by Cn the cycle of order n. The vertices of Cn will be denoted by v0 to vn−1.

Theorem 5.21. Let n be an integer. We have o(Cn) = D if and only if n ≥ 10 and n ≡ 1 mod 3.

Proof. We first prove the “if” part. Let n = 3k + 1, with k ≥ 3, and let Cn be a cycle of order n.
By symmetry, we can assume that Alice first claims v0 and thus o(Cn) = o(Cn, {v0}, ∅, B). We give a

strategy for Bob to obtain at least a draw. The strategy on G10 is provided in Figure 5.5. Bob first claims
v5. By Lemma 5.12 with G′ = (v3, v4, v5, v6, v7), Alice has to answer v4 or v6.

• If Alice claims v6. Then Bob can claim v3 which forces Alice to claim the A-trap in v4 and then Bob
can claim v1 which forces Alice to claim the A-trap in v2. At this point, the position is equivalent to
([Ao3(k−2)A], B) which has outcome D by Lemma 5.19 (remember that k − 2 ≥ 1).

• If Alice claims v4. Bob can claim successively all the v2i+1 starting from v7, creating an A-trap in v2i
that Alice is forced to claim. If n is even, Bob follows this strategy until claiming vn−1. Then Alice has
to claim vn−2 and does not dominate the cycle (she does not dominate v2). Then Bob can dominate
the cycle by claiming v2.

If n is odd, Bob follows this strategy until claiming vn−4. After Alice has claimed vn−5, Bob claims
v2. Alice is forced to claim vn−1, otherwise Bob wins by claiming it. Then Bob claims vn−2, creating
a trap in vn−3, forcing Alice to claim it. At this point, Alice still does not dominate v2. Then Bob can
dominate the cycle by claiming v1.

108

In all cases, the game either ends in a draw or Bob dominates the graph, thus o(Cn) = D.

We now prove the “only if” part. First consider that n ̸≡ 1 mod 3. Without loss of generality, one
can assume that Alice will claim v0 at her first turn, and thus we consider the pointed position (P,B) =
((Cn, {v0}, ∅), B). Consider now the position P ′ obtained from P by adding a vertex claimed by Bob adjacent
only to v0. This position is better for Bob since he dominates more vertices than in P . Thus, it is enough to
prove that (P ′, B) is a win for Alice to ensure that o(P,B) = A. Using Observation 1.75, (P ′, B) is equivalent
to ([Aon−1A], B). By Lemma 5.17, since n− 1 ̸≡ 0 mod 3, o([Aon−1A], B) = A, and thus o(Cn) = A

It remains to prove that Alice wins on C4 and C7. On C4, Alice wins by claiming any two vertices and
as it is not possible to dominate in one move, she will dominate first. On C7, Alice can claim v0, and then
use a pairing strategy with pairs (v2, v3) and (v4, v5). This way, she dominates the cycle in three moves, and
Bob cannot dominate before since at least three vertices are required to dominate C7.

A1B1

A2

B2

A3 B3

A4

B4

Figure 5.5: Bob’s strategy on C10. Moves are labelled by the turn they have been made. As most of the
moves for Alice are forced, and considering symmetries, there is only one possibility. After these moves, Bob
dominates the graph, but Alice does not.

5.4 A polynomial algorithm on forests

In this section, we give the essential elements to solve the case of forests, given by Theorem 5.22 below.
In particular, we will first reduce the problem to any standard forest, meaning that non-standard forests
correspond to cases that can be solved easily. Then we will give necessary conditions about the first move
of Alice, yielding to the introduction of the skeleton of a forest. From that definition, we will be able to
present the general algorithm that computes the outcome of any forest, as depicted by the decision tree of
Figure 5.10. In the next section, we will give the full proof of the validity of the algorithm.

Theorem 5.22. Deciding the outcome of a forest can be done in linear time.

5.4.1 Removing small components

If there is an isolated vertex in the forest, this is like playing in the Maker-Breaker convention.

Lemma 5.23. Let F be a forest with an isolated vertex v0. Then o(F) = A if and only if F \ {v0} contains
a perfect matching.

Proof. Alice has to claim first v0. Then Bob is playing first in F \ {v0}. Since he cannot dominate anymore,
he has the same role as Staller in the Maker-Breaker domination game. In [DGPR20], it is proved that
Dominator playing second in a forest in the Maker-Breaker domination game wins if and only if there is a
perfect matching, which gives the result.

109

r

1
1

0

1
0 0 0 0

0

1

0 0

Figure 5.6: Example of labelling

Isolated edges can be removed without changing the outcome.

Lemma 5.24. Let F be a forest with an isolated edge e = (u, v). Then o(F) = o(F \ {u, v}).

Proof. If Alice (respectively Bob) has a winning (resp. draw) strategy in F \ {u, v}, then she can apply her
strategy in F by pairing u with v. The resulting strategy will still be winning (resp. leading to a draw) in
F .

By applying Lemma 5.23 and Lemma 5.24, one can consider in what follows that all the connected
components have at least three vertices.

5.4.2 Bottom-to-top strategies for Bob

In this subsection, we describe a strategy for Bob that will often be considered to obtain draws or to reduce
trees. Let T be a tree rooted on a vertex r, vertices of T except r are labeled inductively with values 0 and
1, starting from the leaves as follows:

• If all children of v are labeled 1, then v is labeled 0 (hence, all the leaves are labeled 0);

• If at least a child of v is labeled by 0, then v is labeled by 1.

Figure 5.6 gives an example of such a labeling.
Let T be a tree rooted in r and consider the pointed position (P,B) with P = (T, VA, ∅) and VA ⊆ {r}. A

bottom-to-top strategy for Bob on (P,B) consists, at each step, in claiming a vertex v labeled by 1 such that
all the successors of v labeled by 1 are already claimed by Bob. The following property is maintained during
this process: Alice is forced to claim only vertices labeled by 0, and any vertex claimed by Alice (except r)
has his parent claimed by Bob. Indeed, it is true before the first claim of Bob. Assume it is true before
Bob’s turn. Let v be a vertex labeled by 1 such that all the successors of v labeled by 1 are already claimed
by Bob. By definition of the labeling and the assumption, v has a child u labeled by 0 that is unclaimed.
All the children of u are by definition labeled by 1 and thus already claimed by Bob. Thus, u is an A-trap
and Alice is forced to claim it, maintaining the property true. Such a strategy can also be applied when
all the leaves of T are adjacent to vertices already claimed by Bob. In this strategy, Bob can claim all the
vertices labeled by 1. A particular interesting case for Bob is when there exists a vertex v labeled by 1 with
two children labeled by 0:

Lemma 5.25. Let T be a tree and consider the labeling of T rooted in v0. If there exists a vertex labeled by
1 with two children labeled by 0, then the position (P,B) with P = (T, {v0}, ∅) has outcome D.

110

Proof. Bob uses a bottom-to-top strategy on T . When claiming v, he will create two A-traps on the two
children of v labeled by 0, which concludes the proof by Corollary 5.11.

Bob can also use bottom-to-top strategies to reduce the forest to a smaller one where he has a draw
strategy.

Lemma 5.26. Let F be a forest and v0 a vertex. Consider the labeling of F rooted in v0 (for the components
not containing v0, root on any vertex). Let v ̸= v0 be a vertex labeled by 1 and Sv be the set of successors of
v in the rooted tree. Let Fv be the tree obtained by removing all vertices of Sv and adding a leaf v′ connected
to v. Then, if o(Fv, {v0, v′}, {v}, B) = D, then o(F, {v0}, ∅, B) = D.

Proof. Bob follows by a bottom-to-top strategy on Sv and can claim all the vertices of Sv labeled by 1 until
claiming v. Alice is always forced to claim a child of the claimed vertex. Afterward, Bob plays his strategy
to obtain a draw in (Fv, {v0, v′}, {v}, B), leading to a draw for (T, {v0}, ∅, B).

5.4.3 Cherries

A particular case where the bottom-to-top strategy will be useful is when there are some cherries in the
forest. Recall that a cherry is a vertex c connected to two leaves ℓ1 and ℓ2. It will be denoted by the triple
C = (c, l1, l2). If F contains some cherries, the outcome of F can be easily computed.

Lemma 5.27. Let F be a forest. If F has two cherries C = (c, ℓ1, ℓ2) and C
′ = (c′, ℓ′1, ℓ

′
2), with c ̸= c′, then

o(F) = D.

Proof. Let F be such a forest. After Alice has claimed her first vertex, she cannot have claimed both c and
c′. Suppose without loss of generality that Alice has claimed c′. Then Bob claims c. The resulting pointed
position contains two A-traps and thus is draw by Corollary 5.11.

Lemma 5.28. Let F be a forest with exactly one cherry C = (c, ℓ1, ℓ2). Then o(F) = A if and only if there
is a matching in F \ {c} that covers V (F) \N [c].

Proof. Suppose first that F has a matching M in F \ {c} that covers V (F) \ N [c]. Then Alice claims c,
which creates a double B-trap in ℓ1 and ℓ2. The matching M is actually an A-pairing, and, we can suppose
it contains neither ℓ1 nor ℓ2 since these two vertices have their neighborhood included in N [c]. Then by
Lemma 5.14, o(F) = A.

Suppose now that F has no such matching M . We define a strategy for Bob as follows. If Alice’s first
claim is not element of the cherry, then Bob claims c and creates two A-traps, leading to a draw position.
Thus, we can assume that Alice’s first claim r is any element of {c, ℓ1, ℓ2}. Let T be the connected component
of F containing r. If there exists another connected component T ′ of F that has no perfect matching, then
Bob can apply the strategy of Staller playing first in T ′ that prevents Dominator to dominates T ′ (see
[DGPR20]). Thus, one can assume that there is a perfect matching in all the components of F distinct from
T . Now label the vertices of T rooted in r as defined in Section 5.4.2. We want to prove that there exists
a vertex labeled 1 with two children labeled 0, which will ensure a draw strategy for Bob by applying the
bottom to top strategy. If it is not the case, then consider the matching M ′ where all the vertices labeled
1 (except c) are paired with their unique child labeled 0. We claim that M ′ covers V (T) \ N [c]. Indeed,
assume x ∈ V (T) \ N [c] is not covered by M . Then x must be labeled 0 and its parent should be r since
it is the only vertex not labeled. But then x ∈ N [c]. Thus, there exists a matching in F \ {c} that covers
V (F) \N [c]: take the union of M ′ and the perfect matchings of all the other components.

111

SF

Figure 5.7: A forest F and its skeleton SF . Note that F is connected but SF is not. MF is the set of vertices
in triangles, and LF is the set of vertices in squares.

5.4.4 Definition of the skeleton and easy cases

Considering Lemmas 5.27 and 5.28, we will assume now that there is no cherry in F , no isolated vertex and
no isolated P2. From Lemma 5.5, one can assume that after the first turn of Alice, Bob will claim all the
unclaimed vertices of F with a leaf as a neighbor. Alice is then forced to answer on each leaf. This motivates
us to define the skeleton of F , denoted by SF , as the vertices that are not a leaf nor a parent of a leaf.

More formally, we denote by LF the leaves of F and by MF their parents. Remark that, with the
hypothesis that there is neither cherry nor isolated vertex, we have LF ∩ MF = ∅ and the mapping :
LF → MF , which associates to each vertex v of LF its parent, is bijective. Then, let SF be defined by
SF = V (F) \ (LF ∪MF). Figure 5.7 is an illustration of a forest with its skeleton.

In some simple cases, we can directly give the outcome of F .

Lemma 5.29. If SF is empty, then o(F) = A.

Proof. Set LF = {ℓ1, . . . , ℓk}. By hypothesis, F has no cherry, therefore, no vertex can be adjacent to two
of these leaves. Thus, we can denote MF = {m1, . . . ,mk} with mi adjacent to ℓi for 1 ≤ i ≤ k. Note that
k vertices (one on each set {ℓk,mk}) are necessary and sufficient to dominate F . Thus γ(F) = k and there
is a pairing dominating set of size k (the set of pairs {(ℓi,mi), i ∈ {1, ..., k}). By Lemma 5.2, Alice has a
winning strategy in F .

Lemma 5.30. Let T be a connected component of F such that ST is empty. Then o(F) = o(F \ T).

Proof. Assume first that o(F \T) = A and let x be the first claim of Alice in a winning strategy. Then Alice
claims x in F . By Lemma 5.5, Bob will claim all the vertices of MT and Alice will answer all the vertices
of LT . After these moves, T is completely claimed and dominated by both players. By Observation 5.6, we
can remove this component. The game is then equivalent to (F \ T, {x}, ∅) which is a win for Alice when
Bob starts, leading to o(F) = A.

Assume now that o(F \ T) = D. Consider the game played in F and a first claim x of Alice. If
x ∈ V (F \ T), then as before, the position (F, {x}, ∅) is equivalent to the position (F \ T, {x}, ∅) which ends
in a draw when Bob starts. If x ∈ V (T), let x′ be the unique neighbor of x if x is a leaf or the leaf connected
to x if x ∈MT . Then we can assume by Observation 5.6 that Bob claims all the vertices in MT (except x or
x′) and that Alice answers by claiming all the vertices in LT (except x or x′). At this point, all the vertices
of T have been claimed except x′. Then Bob claims x′. Then both players dominate T and the position is

112

equivalent to (F \ T,A) which is a draw position. In conclusion, whatever Alice claims, Bob can ensure a
draw in F . Thus o(F) = D

Lemma 5.31. If SF induces a star of center c such that c has no neighbor in MF , then o(F) = A.

Proof. Alice claims the center c as a first move. Then as explained above, Bob claims all the vertices of MF

and Alice answers all the leaves of LF . After that, Alice dominates the whole graph and Bob does not, since
he does not dominate c.

We say that that F is standard if all its connected components have at least four vertices and a non-empty
skeleton, if F has no cherries, and if SF does not induce a star of center c where c has no neighbor in MF .
We now focus on the standard forests.

5.4.5 First move of Alice

If F is standard, next lemmas say that it can be assumed that Alice must claim outside SF and must connect
it. The main idea behind this result is that, if Alice claims in SF , she claims too far from the leaves and
Bob can win with a bottom-to-top strategy.

Lemma 5.32. Let F be a standard forest and v0 ∈ SF . We have o((F, {v0}, ∅), B) = D.

Proof. Assume first that the graph induced by SF is either a unique vertex, a unique edge, or a star (whose
center has necessarily a neighbor in MF). Let LF = {ℓ1, . . . , ℓk} and MF = {m1, . . . ,mk} such that for
1 ≤ i ≤ k, ℓi and mi are neighbors. Starting from (F, {v0}, ∅), Bob successively claims m1, . . . ,mk, which
forces Alice to reply ℓ1, . . . , ℓk. When Bob has just claimed mk, he dominates the whole graph while Alice
does not yet dominate ℓk. This ensures that o((F, {v0}, ∅), B) = D.

It can now be assumed that the graph induced by SF is neither a unique vertex, a unique edge, nor
a star. Thus, we can consider the position P ′ = (F, {v0} ∪ LF ,MF), and from successive applications of
Lemma 5.5, we just need to prove that o(P ′, B) = D.

First focus on components of SF which do not contain v0. Let C such a component, if each vertex of C
is dominated by a vertex of MF , then Bob dominates C while Alice does not. Otherwise, let v1 be a leaf of
the subtree TC of F induced by C. Bob plays the bottom-to-top strategy in TC rooted in v1. It can be done
since the leaves of TC are only connected to vertices of MF already claimed by Bob. If two vertices labeled
by 0 have the same parent, then the strategy creates a double trap, which ensures a draw. If v1 has all its
children labeled by 1, when Bob claims the last vertex labeled by 1, a double trap is created, since v1 will
be a trap. This also ensures a draw. The only non directly conclusive case is when v1 has one child labeled
by 0, the reached position after Bob has followed the bottom-to-top strategy is such that Bob dominates C
while Alice does not. Indeed, Bob dominates v1 since it is a leaf of C and thus should be connected to MF

but Alice does not dominate v1.
Bob follows this strategy on each component of SF not containing v0. All the answers from Alice are

forced. If a double trap appears, we are done. Otherwise, each component is dominated by Bob and not by
Alice. Moreover, it is Bob’s turn. In such a case , we now need to focus on the component C0 of SF which
contains v0.

• If the diameter of C0 is at most 1, (which implies that the graph induced by SF is not connected), Bob
already dominates C0, and therefore F , but Alice does not.

• If the diameter of C0 is 2, the graph induced by C0 is a star centered in a vertex c. Since it is assumed
that the graph induced by SF is not a star, C0 is not the only component of the graph induced by SF .
Thus, if Bob does not dominate C0 yet, he claims c or any of its neighbor and dominates the whole
graph while Alice does not.

113

• If the diameter of C0 is at least 3, there exists a vertex v2 at distance exactly 2 from v0 in the subgraph
induced by C0. Let (v0, v1, v2) be the path from v0 to v2. Bob can then use a bottom-to-top strategy
in the tree induced by C0 rooted in v0.

– If v1 is labeled by 0, then v2 is labeled by 1. Bob can play a bottom-to-top strategy claiming all
the vertices labeled by 1 except v2. Then he claims v1. At this moment, Bob dominates F but
Alice does not dominate v2.

– If v1 is labeled by 1, Bob plays a bottom-to-top strategy in all branches, finishing by claiming v1.
At this moment, he dominates F but, by construction, Alice does not dominate v2.

Thus, in any case, Bob has a strategy which leads to a draw position, and thus o((F, {v0}, ∅), B) = D.

Lemma 5.33. If F is standard and o(F) = A, then there exists a vertex v0 ∈MF such that o((F, {v0}, ∅), B) =
A. Moreover, v0 satisfies:

1. the subgraph of F induced by SF ∪ {v0} is a tree ;

2. in the labeling of F rooted in v0, each vertex v labeled by 1 has a unique child.

Proof. As it is supposed that o(F,A) = A, there exists a vertex v0 ∈ V (F) such that o((F, {v0}, ∅), B) = A.
From Lemma 5.32, we have v0 ∈ MF ∪ LF . From Lemma 1.78, it can be assumed that v0 /∈ LF . Indeed, if
l ∈ LF and m ∈MF is its private neighbor, N [l] ⊂ N [m].

Thus, we can assume that v0 ∈MF . We now prove the two other properties.

1. Since F has no cherry, there exists a unique vertex v−1 ∈ LF which is a neighbor of v0. Assume that the
graph induced by SF ∪{v0} is not connected. We prove that, under this hypothesis, o((F, {v0}, ∅), B) =
D, which gives the result by contraposition. First, using Lemma 5.5, we have o((F, {v0}, ∅), B) =
o((F, {v0} ∪ LF \ {v−1},MF \ {v0}), B).

With the same arguments as in the previous lemma, the implementation of a bottom-to-top strategy
on each component of the graph induced by SF ∪ {v0} not containing v0 leads to either a double trap
(which gives the result), or a position where each of these components is dominated by Bob but not
by Alice. Now, focus on the component C containing v0. Bob then plays a bottom-to-top strategy on
the tree induced by C rooted in v0. Then Bob claims v−1 after all the vertices labeled by 1 have been
claimed. By this way, if no trap has appeared before, Bob dominates the whole forest F , while Alice
does not totally dominate F . This gives the result.

2. For the second item, consider the labeling of F (that is actually a tree) rooted in v0. First note that
all the leaves of SF are labeled by 0. Thus, each vertex labeled by 1 has at least one child. Assume
that there exists a vertex v labeled by 1 with has at least two children.

• If two children v′ and v” of v are labeled by 0, Bob can then use a bottom-to-top strategy until v
is claimed. When he claims v, he creates a double A-trap in v′ and v” and thus obtains a draw.

• Otherwise, there exists one child v′ of v labeled by 0 and the other one, v′′ labeled by 1. Then
Bob uses a bottom-to-top strategy but without claiming v”, until all the vertices labeled by 1
(except v” are claimed). All replies of Alice remain forced. After this is done, Bob claims v−1,
the neighbor of v0 which belongs to LF , and then dominates the whole graph while Alice does
not dominate v”, which ensures that o((T, {v0}, ∅), B) = D.

As a consequence of this result, if F is standard and winning for Alice, then F is necessarily a tree.

114

v0
A

F

C

C ′
v′0B

v0A

B

A

B

A

B

A

PC

A

B

A B
v0

A

v′0B

PC ′

B A A B

[AoA]

=⇒

Figure 5.8: On the left a forest F . On the right, the equivalent position obtained by splitting F in
Lemma 5.35. The component C is a fork whereas C ′ is a P2.

5.4.6 Splitting the graph

By Lemma 5.33, it can be assumed that Alice first claims a vertex v0 ∈ MF that is connected to all the
components of SF (note that if SF is not connected, there is at most one such vertex). It can also be assumed
that each vertex labeled by 1 in F rooted in v0 has degree exactly 2. In all the remaining, v0 will denote
this first claim of Alice. Let v−1 be the leaf connected to v0. After this first move, it can be assumed, using
Lemma 5.5, that Bob will claim all the other vertices of MF one by one. At each time, Alice must answer
to the corresponding leaf in LF . After this step, the free vertices are the vertices in SF with the vertex v−1.
Formally, the obtained position is P = (F,LF \ {v−1} ∪ {v0},MF \ {v0}) and we have o(F) = o(P,B). In
that follows, we will split the graph into several components defined from the connected components of the
skeleton.

Definition 5.34. For a connected component C of SF , let T be the connected component of F \ {v0}
that contains C. The position PC is defined as the position induced by T ∪ {v0, v′0} in the position P =
(F,LF \ {v−1} ∪ {v0},MF ∪ {v′0} \ {v0}), where v′0 is an additional leaf connected to v0 and claimed by Bob.

Figure 5.8 illustrates the two positions PC and PC′ derived from the forest F of Figure 5.7 when played
on v0. Lemma 5.35 shows that this splitting (with an additional [AoA] position) yields to an equivalent
position.

Lemma 5.35. The position P = (F,LF \ {v−1} ∪ {v0},MF \ {v0}) is equivalent to the position ⋃
C∈CC(SF)

PC

 ∪ [AoA]

where CC(SF) denotes the set of connected components of SF .

Proof. Let P ′ be the position (
⋃

C∈CC(SF) PC) ∪ [AoA]. Note that the unclaimed vertices are in a one-

to-one correspondence in the two positions (v−1 is corresponding to the unclaimed vertex of [AoA]). By
Observation 1.75, we just need to prove that P and P ′ have the same winning sets for both players.

115

A set S of unclaimed vertices is winning for Alice in P and in P ′ if and only if it dominates all the
vertices of SF except the ones connected to (a copy of) v0, which corresponds to the same condition in both
positions. A set S of unclaimed vertices is winning for Bob in P if and only if v−1 ∈ S and S dominates all
the vertices of SF that are not connected to a vertex of MF \ {v0}. In P ′, S is winning for Bob if it contains
the unclaimed vertex of [AoA] and if it is dominating all the unclaimed vertices not already dominated by
Bob, that are exactly all the vertices of SF not connected to MF \ {v0}. Thus, the winning sets are in
bijection and by Observation 1.75, the positions are equivalent.

Using this decomposition, we now prove that Bob can just focus on a subset of components where he has
a strategy that ensures a draw.

Lemma 5.36. Assume there exists a set S of connected components of SF such that o((
⋃

C∈S PC) ∪
[AoA], B) = D. Then o(F) = D.

Proof. Using Lemma 5.35, it suffices to prove that o((
⋃

C∈CC(SF) PC) ∪ [AoA], B) = D. For each C /∈ S,
Bob plays a bottom-to-top strategy on PC rooted on v0. At each time Alice is forced to answer in the same
component C, and, at the end, Bob dominates the component C. This is successively done for all such
components.

Afterward, the remaining position is equivalent to ((
⋃

C∈S PC) ∪ [AoA], B) which has outocome D by
hypothesis.

5.4.7 Favorable skeletons for Alice

In this subsection, we give some necessary and sufficient conditions for a component C to be winning for
Alice.

Definition 5.37. A fork is a star with at least three branches where each is subdivided exactly once.

On Figure 5.8, the unclaimed vertices of C is an example of a fork with four branches.

Lemma 5.38. If o((F, {v0}, ∅), B) = A, then all the connected components of SF must induce a path or a
fork that is connected to v0 by a leaf.

Proof. Proceeding by contraposition, assume that there exists a component C of SF , which is neither a fork
nor a path connected to v0 by a leaf . We will prove o(PC ∪ [AoA], B) = D, which gives the result using
Lemma 5.36.

Since C is not a path connected by a leaf to v0, there exists a vertex c ∈ C of degree at least 3 in
the tree induced by C ∪ {v0}. Let Pa = (c, a1, a2, ...ap) be the path linking c to v0 (ap is adjacent to v0),
Pb = (c, b1, b2, ..., bq) be a path of C of maximal length such that b1 ̸= a1 and Pc = (c, c1, c2, ..., cr) be another
maximal path of SF starting in c. Note that possibly p = 0, but that q ≥ r ≥ 1. In the labeling of F rooted
in v0, the vertex c is necessarily labeled by 0 since it has degree 3. This implies that both q and r are even
since bq and cr, as leaves of C, are labeled by 0. Moreover, all the vertices labeled by 1 have degree 2. This
implies that all the vertices of the three paths Pa, Pb and Pc that are connected to other vertices of F must
be labeled by 0. In particular, using Lemma 5.26, it is enough to prove that there is a draw strategy when
C is reduced to these three paths.

Assume first that q ≥ 4. By Lemma 5.26, it is enough to give a draw strategy for Bob for q = 4 and
r = 2 with C reduced to the union of the three paths. The first claim of Bob is b2. By Lemma 5.12, Alice
should claim either b1 or b3.

• If Alice replies by claiming b3, then Bob claims c, which forces Alice to claim b1. Then, he successively
claims a2, a4, and so on until ap−1 is dominated by B. Successive replies of Alice are forced: when
Bob claims a2i, Alice necessarily replies in a2i−1. Finally, Bob claims in [AoA] and gets a draw by
dominating before Alice (Alice does not dominate c1 and c2).

116

v−1 v0

A

v1 v2 v3 v4 v5 v6 v7 v8 v9 v10

B A

B

A

SF

Figure 5.9: Example of a tree F such that o(F) = D but SF is a path. Alice should claim first v0 or v9. If
Alice claims v0, Bob claims the other vertices ofMF . Then Bob can win by claiming v2 (Alice should answer
v1, v3 or v4), v6(Alice should answer v5,v7 or v8) and v−1. The case where Alice claims first v9 is similar.

• If Alice replies by claiming b1, then Bob claims c1, which forces Alice to claim c2. Then Bob claims the
unclaimed vertex of [AoA]. Then the position is equivalent to the position ([Aop−1B]∪ [Bo2B], A). By
Lemma 5.16, this position is equivalent to ([Bo2B], A) which is a draw since Bob already dominates.

Assume now that r = q = 2. As before, it is enough to give a strategy for C restricted to the three paths.

• If p ≥ 5, then Bob claims a3, which enforces Alice to reply either a2 or a4 by Lemma 5.12.

– If Alice claims a4, then Bob successively claims b1, c1 (with forced Alice to claim b2 and c2), and
then a1, which creates two A-traps in a2 and c.

– If Alice replies by a2, then, first, Bob claims, a5, a7, . . . , and so on until ap is dominated by Bob,
replies of Alice being forced on a4, a6, Second, Bob claims c. If Alice does not answer in the
set {a1, b1, b2, c1, c2}, Bob successively claim b1 creating an A-trap in b2, c1, creating an A-trap
in c2 and a1 isolating c. Thus, Alice must claim a vertex in the set {a1, b1, b2, c1, c2}. Then Bob
claims the unclaimed vertex of [AoA] and dominates the whole position before Alice.

• If p = 4, the position can be treated as for p = 5 if Alice replies in a2 or a4. But she can also claim a1.
In this case, Bob claims the unclaimed vertex of [AoA] with the threat to claim c and dominate before
Alice. Even if Alice replies in c, Bob succeeds in dominating before Alice by successively claiming b1,
c1 and a2 (Alice will not dominate a3 during this time).

• If p = 1 or p = 3, then Bob claims c. If Alice claims the unclaimed vertex of [AoA], a2 or a3, then
Bob can claim b1 and c1, forcing Alice to reply by claiming b2 and c2. Then Bob can isolate c by
claiming a1. Thus, Alice should answer by claiming a vertex in {a1, b1, b2, c1, c2}. Then Bob can claim
the unclaimed vertex of [AoA]. If p = 1, he wins. If p = 3, he can dominate in one move by claiming
either a2 or a3 whereas Alice need at least two moves to dominate.

• If p = 2, then we have a fork (since all the other branches of C starting from c must have length 2
and the vertices adjacent to C are labeled by 1, and thus have degree 2), which is not possible, by
hypothesis.

• If p = 0, then Bob claims the unclaimed vertex of [AoA]. Alice needs at least two moves to dominate.
If Alice does not claim c, Bob wins at his second turn by claiming it. If Alice claims c she still need
two moves to dominate. Then Bob can dominate before by claiming b1 and c1.

Lemma 5.38 gives us the possible structures of the connected components of SF to have a position on
which Alice can win. But actually, this condition is not sufficient: there are for example trees where SF is
a path, but Bob can obtain a draw (see for example Figure 5.9). We need to consider which vertices of SF

are already dominated by Bob.

117

Definition 5.39. Let X,Y,∈ {A,B}, n be a positive integer, and a subset U ⊆ {1, 2, . . . , n}. We denote by
[XonY]U the position obtained from the bounded path [XonY] where for each i ∈ U a pendant edge xiyi is
added to the vertex vi, with xi is linked to vi and claimed by Bob, and yi claimed by Alice.

Informally, an [XonY]U is a bounded path, where some vertices are already dominated by Bob. As an
illustration, if we set that v−1 is claimed by Bob on Figure 5.9, then we obtain the position [Ao8B]{4}. When
U is empty, [XonY]U = [XonY]. If Y = B (respectively X = B), one can assume that n /∈ U (resp. 1 /∈ U).
Indeed, vn (resp. v1) is already dominated by Bob.

Finally, if C is a connected component of SF that is a path connected to v0 by a leaf, then PC is equivalent
to a position [AonB]U , for a fixed n and a fixed U . Indeed, set for U all the integers i such that vi is connected
to a vertex of MF \ {v0}.

The following three observations give natural properties about bounded paths. The first one is about the
existence of a pairing.

Observation 5.40. A position [XonY]U contains a A-pairing, except if X = Y = B and n is odd.

Roughly speaking, the next two observations say that it is always better for Alice to play on a bounded
path with the extremities claimed by her, and with fewer vertices dominated by Bob in U .

Observation 5.41. For any integer n and any set U ∈ {1, ..., n}, and any X,∈ {A,B}, we have

o([AonA]U , X) ≥ o([AonB]U , X) ≥ o([BonB]U , X).

Observation 5.42. For any integer n and any sets U ⊆ U ′ ⊆ {1, ..., n}, and each X,Y, Z ∈ {A,B}, we
have

o([XonY]U , Z) ≥ o([XonY]U
′
, Z)

.

In the next definition, we define the components C that are favorable for Alice, and among them, the
ones that are strongly and weakly favorable. Theorem 5.44 will justify this terminology.

Definition 5.43. Let v0 be the first move of Alice, satisfying Lemma 5.33. Let C be a connected component
of SF . We say that C is favorable for Alice if it satisfies one of the following case:

1. C is a path connected to v0 by a leaf, i.e, PC = [AonB]U with U ⊆ {1, 2, . . . , n − 1}, and at least one
of the following cases holds:

(a) n ∈ {1, 2} and U = ∅;
(b) n = 3 and U ⊆ {1} or U ⊆ {2};
(c) n ≥ 4 and U ⊆ {2, 3, n− 2};
(d) n ≥ 9, n is odd and U ⊆ {2, 5, n− 2};
(e) n ∈ {9, 11} and {3, 5} ⊆ U ⊆ {2, 3, 5, n− 2};

2. C induces a fork and the only vertices of C that can be connected to MF are the center c, the leaves
except the one connected to v0, and eventually the neighbor of c between c and v0.

Moreover, if C belongs to the cases (1.a), (1.b) or (1.c), we say that it is strongly favorable. On the
opposite, if C belongs to the cases (1.e) or (2), we say that it is weakly favorable. If C corresponds to the
case (1.d), it is neither strongly nor weakly favorable.

We can now state the final theorem that ends the characterization of trees.

Theorem 5.44. Let F be a tree and v0 ∈ MF be a first move of Alice that satisfies the condition of
Lemma 5.33. The position ((F, {v0}, ∅), B) has outcome A if and only if all the components of SF are
favorable to Alice and at most one of them is weakly favorable.

118

Input F

Is there an iso-
lated vertex v0?

A

D

Is there a perfect
matching in F \ {v0}

Remove isolated edges

How many cherries? D

A
Is there a matching

in F \ {c} that

dominates V (F) \N [c]?

D

Computes LF ,MF ,SF

Is SF empty?

Remove compo-
nents of F with
empty skeleton

A

Is SF connected ?
Is SF a star whose

center is not
linked to MF ?

A

∃v0 ∈ MF that
makes PSF

favorable? A

D

∃v0 ∈ MF that
connects SF ?

D

All cc of SF fa-
vorable to Alice ?

At most one cc
weakly favorable ?

A

D

D

yes Lemma 5.31

no

yes Theorem5.44

no Theorem 5.44

no Lemma 5.33

yes, fix v0

yes yes Theorem 5.44

no Theorem 5.44
no

Theorem 5.44

no

yes yes

Lemma 5.23

no

Lemma 5.24

Lemma 5.30

≥ 2 Lemma 5.27

1, of center c

yes Lemma 5.28

no Lemma 5.28

0

yes Lemma 5.29

no

no

yes

Figure 5.10: The decision tree to compute the outcome of any forest.

119

The proof of Theorem 5.44 is a long case analysis, and is postponed to Section 5.5. For now, we will
prove Theorem 5.22 assuming Theorem 5.44. We summarize the algorithm into the diagram of Figure 5.10.

Proof of Theorem 5.22. Let F be a forest. If F has an isolated vertex v0, then by Lemma 5.23, o(F) = A
if and only if F \ {v0} has a perfect matching. If F has an isolated edge e = uv, then by Lemma 5.24, F
has the same outcome as F \ {u, v}. Thus, we can assume that all the connected components of F have at
least three vertices. If F has two cherries, then o(F) = D by Lemma 5.27. If it has one cherry (c, l, l′), then
by Lemma 5.28, o(F) = A if and only if there is a matching in F \ {c} that covers V (F) \N [c]. Thus, we
can assume that F has no cherry. If SF = ∅, then o(F) = A (Lemma 5.29). Otherwise, one can remove
components of F that have an empty skeleton (Lemma 5.30). If SF induces a star of center c such that c is
not adjacent to MF , then o(F) = A (Lemma 5.31). Otherwise, F is standard. If F is not connected, then
o(F) = D. If SF is not connected, Alice should claim the vertex v0 of MF that connects SF (Lemma 5.33)
if it exists (otherwise o(F) = D). Then Alice wins if and only if all the components of SF are favorable
to her and at most one is weakly favorable (Theorem 5.44). Assume now that SF is connected. Let C be
the tree induced by SF . Alice should claim in MF and connected to a leaf of C (Lemma 5.33). If there
exists v0 ∈MF that is adjacent to a leaf of C such that PC is favorable to Alice, then o(F) = A, otherwise
o(F) = D (Theorem 5.44).

In terms of complexity, almost all the operations described in the algorithm are elementary (finding
a matching in a forest, identifying the isolated vertices, edges and cherries, computing LF , MF and SF ,
deciding if SF is connected or a star) and can be done in linear time by examining the tree from the leaves.
When SF is not connected, there exists at most one v0 that can connect them and this is easy to check. If
SF is connected and thus reduce to a single component, one have to check all the possible v0 that could make
PSF

favorable. If SF induces a path, there are at most two possibilities for v0 since it should be connected
to an extremity of the path. If SF induces a fork (easy to check) of center c, to be favorable, there must
be at most one neighbor of c that is adjacent to MF . If there is exactly one neighbor a1 of c adjacent to
MF , then the leaf of SF adjacent to a1 must have only one neighbor in MF and this neighbor will be the
vertex v0. If all the neighbors at distance 1 of c in SF are not adjacent to vertices of MF , then there must
be at least one leaf of SF adjacent to exactly one vertex of MF . This vertex of MF would be v0. In all the
other cases, PSF

cannot be favorable. Thus, finding v0 can be done in linear time. Finally, once v0 is fixed,
deciding whether a component is favorable or not can also be done in linear time (because it is a fork or a
path with pending edges).

5.5 Proof of the main theorem

We here prove Theorem 5.44 by considering successively both directions of the equivalence. Subsection 5.5.1
proves that the favorable components are necessary conditions. The sufficient condition is then proved in
Subsection 5.5.2.

5.5.1 The direct part

In this subsection, we assume that o((F, {v0}, ∅), B) = A and we prove that all the components are favorable
and at most one is weakly favorable. We already know by Lemma 5.38 that all the connected components of
SF are paths or forks. In Lemma 5.45, we prove that if a component is a fork, it should satisfy the conditions
of Point 2 in Definition 5.43. In Lemma 5.46, we prove that if a component is a path, it should satisfy the
conditions of Point 1 in Definition 5.43. Finally, in Lemma 5.50, we prove that if two components are weakly
favorable, then the outcome is D.

Lemma 5.45. Assume that o((F, {v0}, ∅), B)) = A. Let C be a connected component of SF which induces
a fork. Then C is favorable.

120

Proof. Proceeding by contraposition, we assume that C is not favorable. We will prove that o([AoA] ∪
PC , B) = D which gives the result using Lemma 5.36.

Let c denotes the center of the fork. Let a1 and a2 be the two vertices on the path between c and v0 with
a2 adjacent to v0, and v−1 be the unclaimed vertex of [AoA]. Since C is not favorable, it means that either
a2 or a neighbor of c but not a1 is dominated by Bob in PC . We consider the two cases.

• If a2 is already dominated by Bob, then Bob claims c.

– If Alice replies in v−1 then Bob can claim all the neighbors of c distinct from a1 and Alice is
forced to answer the leaf of C adjacent to the vertex claimed by Bob. Afterward, Bob claims a1,
isolating the vertex c, which ensures that Alice will not dominate the graph.

– otherwise, Bob claims v−1 and, therefore, dominates the graph before Alice.

• If Bob already dominates a neighbor b1 of c (with b1 ̸= a1), then Bob claims all the other neighbors
of c distinct from a1 and b1, forcing Alice to claim the leaves adjacent to them. Then Bob claims the
unclaimed vertex of [AoA]. At this point, he needs only one move to dominate the graph that can be
either a1 or a2, whereas Alice still need to dominate a1 and b2, which cannot be dominated in a single
move. Thus, Bob will dominate before Alice.

Lemma 5.46. Assume that o((F, {v0}, ∅, B)) = A, and let C be a connected component of SF which induces
a path. Then C is favorable.

Proof. Let PC = [AonB]U . We proceed by contraposition. Assume that C is not favorable. We will prove
that o([AoA] ∪ PC , B) = D, which gives the result by using Lemma 5.36. We split the proof into a few
claims. We denote by v−1 the unclaimed vertex of [AoA] and by v1, ..., vn the unclaimed vertices of PC . We
consider for the labeling that PC is rooted in v0.

Claim 5.47. If n is even and 5 ∈ U , then o([AoA] ∪ PC , B) = D.

Proof of the claim. When n = 6, Bob claims v3, which enforces Alice to reply in v4 (if Alice replies in v2,
then Bob claims v5 and create a double trap in v4 and v6). Then Bob successively claims v1, forcing Alice
to claim v2, and v−1, therefore dominates before Alice.

If n ≥ 8, v7 is labeled by 1. By Lemma 5.26, the position can be reduced to the case n = 6, and thus is
also a draw. ⋄

Claim 5.48. If n ≥ 4 and if there exists i ∈ U such that i /∈ {2, 3, 5, n− 2}, then o([AoA] ∪ PC , B) = D.

Proof of the claim. Assume first that i = 1.

• If n ∈ {4, 5}, then Bob first claims v3, (which forces Alice to answer v4 or v2). Then Bob claims v−1

and dominates before Alice (who does not dominate v2 or v4).

• If n ≥ 6, either v5 or v6 is labelled by 1. Then as before, we can apply Lemma 5.26 to reduce to the
case n ∈ {4, 5}.

We can now assume that i ≥ 4. There are two cases, according to the parity of the value n− i. In each
case, Lemma 5.26 is used.

• If n− i is odd,

– If n− i = 1, that is i = n− 1, then Bob claims vn−3 (this is possible since 4 ≤ i < n),

∗ For n = 5, Alice has to reply a vertex in {v3, v4, v5}, otherwise Bob plays v4 and creates a
double trap in v3 and v5. But she cannot dominate in a single move, and then Bob claims
v−1 and directly dominates before Alice.

121

∗ For n ≥ 6, Alice necessarily replies in vn−2. Indeed, by Lemma 5.12, Alice should answer in
vn−4 or vn−2, but if she claims vn−4 then a component [Bo2k+1B] will appear which is a draw
by Lemma 5.18. After Alice has claimed vn−2, the resulting position P is then equivalent
to a position [AoA] ∪ [Aon−4B]U

′ ∪ [Ao2B]{1}, for some set U ′. We thus have o(P,B) ≤
o([AoA]∪ ([Aon−4B]∪ [Ao2B]{1}), B). But, by Lemma 5.16, the component [Aon−4B] can be
removed, thus, o(P,B) ≤ o([AoA]∪ [Ao2B]{1}, which has outcome D as Bob can dominate in
one move while Alice does not dominate.

– If n− i ≥ 3, then vi+2 is labeled by 1 and Lemma 5.26 applies to reduce the instance to the case
where i = n− 1.

• Assume now that n − i is even. Since i /∈ {n − 2, n}, we have n − i ≥ 4. If n − i ≥ 6, then vi+5 is
labeled by 1, and Lemma 5.26 applies to reduce the instance to the case where n − i = 4. Thus, we
can assume that i = n− 4. Furthermore, since i /∈ {1, 2, 3, 5}, we can assume that n ≥ 8 and n ̸= 9.

– if n = 8, then Bob successively claims v6, v2, v−1 and dominates before Alice. Indeed, she has
only claimed two moves to dominate vertices between v2 and v7, and the only dominating set of
size two on this path contains v6.

– if n = 10 , then Bob successively claims v8, v4. As, by Lemma 5.12, Alice has to claim a vertex
adjacent to the vertex that Bob has claimed, her moves are almost forced. If she has claimed v9
and v3, Bob claims v6 and creates two traps in v5 and v7. Otherwise, he claims v−1 and dominates
before Alice by a final claim in {v1, v2} while Alice needs at least two moves to dominate.

– if n = 11, Bob claims v9. By Lemma 5.12, Alice should answer in {v8, v10}. If Alice claims v8,
Bob claims v5. Alice has to claim either v4 or v6. Then, Bob claims v−1. Alice now needs to
claim at least two more vertices to dominate: one to dominate {v4, v6} and one to dominate v10,
while Bob will dominate with his next claim in {v1, v2}.
If Alice claims v10, Bob also claims v5. Alice has to claim v6, otherwise v7 creates a double trap.
Now Bob claims v−1 and will dominate with his next claim in {v1, v2}, while Alice needs two
vertices to dominate.

– If n ≥ 12, Bob claims vn−9, which, as before, enforces Alice to reply in vn−8 to avoid a component
[Bo2k+1B]. The position is now equivalent to ([AoA] ∪ [Ao8B]4 ∪ [Aon−10B], B), which is, by
Lemma 5.16, equivalent to ([AoA] ∪ [Ao8B]4, B) which corresponds to the case n = 8. ⋄

Claim 5.49. Assume that n ≥ 13, n is odd and {3, 5} ⊆ U , then o([AoA] ∪ PC , B) = D.

Proof of the claim. It suffices to prove it for n = 13, since, for n > 13, Lemma 5.26 applies. Bob claims v11,
which enforces Alice to reply in v10 (if Alice replies in v12, then Claim 5.47 applies). Then, Bob claims v8.

• If Alice replies in v7, then Bob successively claims v5 and v−1. Afterward, Bob finally succeeds in
dominating before Alice by claiming either v1 or v2.

• If Alice replies in v6, then Bob claims v2, which enforces Alice to claim v1,v3, or v4. Then Bob claims
v−1. At this step, Bob threatens to claims v5 and dominate before Alice. Thus, the reply of Alice is
necessarily v5. Then, Bob claims v7, which enforces the reply v9 from Alice. Finally, Bob claims either
v3 or v4 (one of these vertices is free) and dominates before Alice. ⋄

We can now finish the proof of the lemma. Since C is not favorable, we can split the cases according to
n as follows:

• If n = 1, then the result is obvious, since there is no unfavorable component.

• If n = 2 and 1 ∈ U , then Bob claims v−1 and then dominates the graph before Alice, which is a
contradiction.

122

• If n = 3 and 1, 2 ∈ U , then Bob claims v−1 and then dominates the graph before Alice, which is a
contradiction

• If n ∈ {4, 5, 6, 7} then Claim 5.47 and Claim 5.48 give the result.

• If n ≥ 8 and n is even, the combination of Claims 5.47 and 5.48 gives that U ⊆ {2, 3, n− 2}.

• If n is odd and n ≥ 13, then the combination of Claims 5.48 and 5.49 gives that either U ⊆ {2, 3, n−2}
or U ⊆ {2, 5, n− 2}, which gives the result .

• If n ∈ {9, 11}, then Claim 5.48 allows to conclude.

Lemma 5.50. Assume there are two connected components C,C ′ of SF that are weakly favorable.
Then o(F, {v0}, ∅, B) = D.

Proof. Assume first that both C and C ′ both induce forks. We prove the result for forks with exactly three
branches. Indeed, if Bob has a strategy in this case, he will have a strategy for forks with more branches
using Lemma 5.26 since all the neighbors of c are labeled by 1. Let c denote the center of the fork induced
by C, a1, b1, c1 denote the neighbors of c, in such a way that such that a1 is between c and v0, and a2, b2, c2
respectively denote the neighbors of a1, b1, c1 different from c . We define in the same way c′, a′1, b

′
1, c

′
1, a

′
2, b

′
2

and c′2 for C ′. Bob start by claiming v−1. By symmetry, we can suppose that Alice replies one vertex among
{c, a1, a2, b1, b2}.

• If Alice replies in c , then Bob successively claims b1 and c1 (the replies of Alice are forced). Now Bob
claims c′, then Bob needs two more moves to dominate (one in (a1, a2) and one in (a′1, a

′
2)) whereas

Alice needs three moves.

• If Alice replies in a1, then Bob claims a2.

– If Alice replies in a′1, then Bob claims a′2. At this step, Alice needs at least four moves to dominate
while Bob can dominate in three moves in a lot of manners, with a center of a fork, and two vertices
of the other fork. Alice cannot avoid Bob to dominate using three moves, and therefore, before
Alice.

– If Alice replies in c, then Bob successively claims b1 and c1. After the forced replies of Alice, Bob
claims in c′ and dominates before Alice with one last move in (a′1, a

′
2) while Alice cannot dominate

in one move. The case where Alice replies in c′ can be treated symmetrically.

– If Alice replies in b1, then Bob claims successively c1 and c
′ and dominates before Alice by claiming

one vertex in (c, b2).

– If Alice replies in b′1, then Bob claims c′. At this step, Alice needs at least four moves to dominate
while Bob can dominate in three moves by a pairing strategy with the pairs (a′1, a

′
2), (b1, b2) and

(c1, c2).

• If Alice replies in a2, then Bob claims a1, and afterward, all is similar to the previous case.

• If Alice replies in b1 or b2, then Bob claims c′. Bob can now dominate in three moves by pairing
(a′1, a

′
2), (a1, a2) and (c, c1) while Alice needs at least four moves.

Assume now that both C and C ′ induce paths. Since they satisfy the conditions 1.e of Definition 5.43,
their length is 9 or 11. Bob first reduce the paths to length 9 if needed so that both paths have length 9.
Let (v1, v2,, v9) (respectively (v′1, v

′
2,, v

′
9)) the path induced by C (resp. C ′), with v1 and v′1 connected

to v0. Since the paths are weakly favorable, Bob already dominates v3, v5, v
′
3 and v′5.

First, Bob successively claims v7 and v′7. By Lemma 5.12, Alice should answer first v6 or v8 and then v′6
or v′8. We have three cases according to the replies of Alice.

123

• If the replies are v8 and v′8, then Bob continues by claiming v3 and v′3 which enforces Alice to reply in
v4 and v′4 (if, for instance, Alice does not reply v4 , then Bob claims v5 and creates a double trap in v4
and v6). Afterward, Bob claims v−1, and achieves to dominate before Alice as he only needs one move
in (v1, v2) and one in (v′1, v

′
2) while Alice needs to dominate v2, v

′
2, v6 and v′6, each of them requiring a

different move.

• If the replies are v6 and v′8 (note that v8 and v′6 is symmetric), then Bob continues by claiming v′3 which
enforces Alice to reply in v′4, Afterward, Bob claims v−1. Now Bob has a paired dominating set of size
3 {(v1, v2), (v′1, v′2), (v3, v4)}, but Alice needs to dominate v2, v8, v

′
2 and v′6, each of them requiring a

different move. Thus, Bob can dominate first.

• If the replies are v6 and v′6, Bob claims v−1. At this time Bob and Alice need four moves to dominate,
but each set of four moves for Alice contains the pair {v3, v′3}. Thus, after the reply of Alice, Bob can
claim one element of the pair {v3, v′3} and, by this way, dominate before Alice.

Assume now that C induces a path and C ′ induces a fork. As before, C ′ can be assumed to have exactly
three branches and C nine vertices. We denote the vertices of the fork and the path as in the previous cases.

First, Bob claim v7. Once again, Alice has to claim either v6 or v8, otherwise Bob ensure a draw by
Lemma 5.12 There are two cases according to the reply of Alice.

• If Alice replies v8, then Bob successively claims b1, c1 and a1 (replies of Alice being forced in b2, c2 and
c). Afterward, Bob claims v3. Alice has to claim either v2 or v5 by Lemma 5.12. If she claims v2, Bob
claims v5 and creates two traps. If she claims v4, Bob claims v−1. Now Bob only needs one move in
either v1 or v2 to dominate while Alice needs at least two, as she does not dominate v2 nor v6.

• If Alice replies v6, then Bob claims v−1

– If Alice replies c, then Bob successively claims b1, c1 (replies of Alice are again forced in b2 and c2)
and then v3. At this time, Bob needs two moves to dominate (one in v1, v2 and one in (a1, a2)),
while Alice needs to dominate v2, v4 and v8, and each of them requires a different move. Therefore,
Bob dominates before Alice by this way.

– If Alice replies v3, then Bob claims c. Now (a1, a2), (v1, v2) and (v4, v5) is a paired dominating
set for Bob of size three, while Alice needs to dominated a2, b1, c1 and v8, each of these vertices
requiring a different move.

– If Alice replies v1 or v2, by Lemma 1.78, as N [v1] \ N [Vt] ⊂ N [v2] \ N [Vt] for t ∈ {A,B}, we
can suppose, she plays v2. Then Bob successively claims b1, c1, a1 (replies are forced in b2, c2, c
respectively) and then v1. At this time Bob needs one move to dominate in (v3, v4), while Alice
needs to dominate v4 and v8 which she cannot dominate in a single move.

– If Alice replies a1 or a2, by Lemma 1.78, as N [a2] \N [Vt] ⊂ N [a1] \N [Vt] for t ∈ {A,B}, we can
suppose she claims a1. Bob claims a2.

∗ If Alice replies c, then Bob successively claims b1, c1, (replies are forced) and v3. At this time
Bob can dominate in two moves, one in (v1, v2) and one in (v4, v5) while Alice cannot, as she
still has to dominate v2, v4 and v8.

∗ If Alice replies v1 or v2, by Lemma 1.78, as N [v1] \ N [Vt] ⊂ N [v2] \ N [Vt] for t ∈ {A,B},
we can suppose she replies v2. Then Bob successively claims b1, c1, (replies are forced for
Alice) and v1. At this time Bob needs one move in (v3, v4) to dominate, while Alice needs
two moves to dominate v4 and v8.

∗ If Alice replies elsewhere, then Bob claims c. At this time Bob needs two moves to domi-
nate,one in (v1, v2) and one in (v3, v4, v5). By hypothesis, at least one will be available. Alice
needs at least three moves to dominate, as she does not dominate at least three of the four
vertices v3, v8, b1 and c1, each of them requiring a different move.

124

– If Alice replies elsewhere, then Bob claims c. At this time Bob needs three moves to dominate,
one in (v1, v2), one in (a1, a2) and one in (v3, v4, v5). By hypothesis, at least one will be available
in each of these sets at any moment. Alice needs at least four moves to dominate, as she does not
dominate at least four of the five vertices a1, b1, c1, v3 and v8, each of them requiring a different
move.

5.5.2 The converse part

In this final subsection, we prove the reverse part of Theorem 5.44: if all the connected components of SF

are favorable and at most one is weakly favorable, then Alice has a winning strategy. This part is naturally
harder than the other one, as Alice cannot force Bob to answer where she would like to. Hence, all the
possible answers of Bob must be considered, which was not the case previously, as Alice was often forced to
answer locally to a move of Bob.

We first prove that we can remove the strongly favorable components (i.e. corresponding to the cases
1.a to 1.c of Definition 5.43). Then we consider only one weakly favorable component and give a strategy
for Alice in this case. Finally, we define a class of positions C1 that contains the starting positions (without
strongly favorable components) and for which Alice can ensure either to win or to stay in this class after a
move of Bob. By induction, this will imply that Alice has a winning strategy in this class. Note that one
can always consider U to be maximal in Definition 5.43. Indeed, if Alice have a strategy for U maximal,
she will have a strategy with any subset of U . Therefore, and to merge some cases in the proofs, sometimes
some integers will be in U even if the corresponding vertices do not exist in the graph. In this case, consider
that this integer is not really in U .

Removing strongly favorable components

Lemma 5.51. Let Q be a position where Bob is not dominating. Consider a strongly favorable component
[AonB]U . We have

o(Q,B) ≤ o(Q ∪ [AonB]U , B).

In other words, adding a strongly favorable component can only be favorable to Alice.

Proof. First note that since [AonB]U is strongly favorable, we have U ⊆ {2, 3, n− 2}.
We prove by induction on the number p of unclaimed vertices of Q ∪ [AonB]U that if o(Q,B) = A,

then o(Q ∪ [AonB]U , B) = A. Note that p ≥ n Let v1, v2,vn denotes the sequence of unclaimed vertices
of [AonB]U . First we can assume that n > 1. Indeed, if n = 1, then U = ∅ and by Observation 5.6,
o(Q ∪ [AoB]U , B) = o(Q,B).

Thus, we can assume that p ≥ 2 and n ≥ 2. If p = n = 2, Q contains no unclaimed vertices. Since
o(Q,B) = A, Alice dominates Q while Bob does not. Thus, in Q ∪ [Ao2B]U Bob claims v1 or v2, and Alice
answers by claiming the other one. By this way, Alice dominates Q ∪ [AonB]U while Bob does not. Thus,
the resulting position is winning for Alice.

Consider now that p ≥ 3. Let y be the vertex claimed by Bob. Assume first that y is an unclaimed
vertex of Q. Note that Bob cannot dominate Q in one move unless Alice already does, otherwise we would
have o(Q,B) = D.

• If Q is not dominated by Alice yet, then Alice claims x according to a winning strategy in Q. Thus,
by definition, o(Qx,y, B) = A and by induction hypothesis o(Qx,y ∪ [AonB]U , B) = A.

• if G is already dominated by Alice:

– if 2 ≤ n ≤ 4, then Alice claims v3 and dominates the whole graph before Bob;

125

– if n = 5, the Alice claims v3. We have:

o((Q ∪ [AonB]U)v3,y, B) ≥ o([AonB]Uv3,y, B) ≥ o([Ao2A]{2} ∪ [Ao2B]), B) = A,

where the first inequality comes from the fact that Q is dominated by Alice, the second inequality
comes from Lemma 5.8 and from the fact that U ⊆ {2, 3}, which is strongly favorable according
to Definition 5.43.1.a, and the final equality is obtained by induction hypothesis, using Q′ =
[Ao2A]{2}.

– if n = 6, then Alice claims v3. We have:

o((Q ∪ [AonB]Uv3,y, B) ≥ o([AonB]Uv3,y, B) ≥ o([Ao2A]{2} ∪ [Ao3B]{1}, B) = A,

where the first inequality comes from the fact that Q is dominated by Alice, the second inequality
comes from Lemma 5.8 and from the fact that U ⊆ {2, 3, n − 2}, which is strongly favorable
according to Definition 5.43.1.b, and the final equality is obtained by induction hypothesis, using
Q′ = [Ao2A]{2}.

– if n ≥ 7, then Alice claims v3. We have:

o((Q ∪ [AonB]U)v3,y, B) ≥ o([AonB]Uv3,y, B) ≥ o([Ao2A]{2} ∪ [Aon−3B]{n−5}, B) = A,

where the first inequality comes from the fact that Q is dominated by Alice, the second inequality
comes from Lemma 5.8 and from the fact that U ⊆ {2, 3, n − 2}, which is strongly favorable
according to Definition 5.43.1.c, and the final equality is obtained by induction hypothesis, using
Q′ = [Ao2A]{2} .

Assume now that Bob claimed a vertex vi of [Ao
nB]U .

• If 2 ≤ i ≤ n− 1, then Alice claims vi+1. We have

o((Q ∪ [AonB]U)vi,vi+1
, B) = o(Q ∪ [Aoi−1B]{2,3} ∪ [Aon−i−1B]{n−i−3}, B) = A,

where the first equality comes from Lemma 5.8 and the inequality comes from two applications of the
induction hypothesis.

• If i = 1, and n ≥ 3 then Alice claims v3 . We have

o((Q ∪ [AonB]U)v3,v1 , B) ≥ o(Q ∪ [Aon−3B]{n−5}, B) = A,

by induction hypothesis.

If n = 2 then Alice claims v2 . We have o((Q∪ [Ao2B]U)v2,v1 , B) = o(Q,B) = A, from Observation 5.6

• If i = n, then Alice claims vn−1. We have

o((Q ∪ [AonB]U)vn−1,vn , B) ≥ o(Q ∪ [Aon−2A]{2,3}, B) ≥ o(Q ∪ [Aon−2B]{2,3}, B) = A,

by induction hypothesis and Observation 5.41.

Thus, for each claim y of Bob on Q ∪ [AonB]U , there exists an answer x of Alice such that o((Q ∪
[AonB]U)x,y, B) = A. This ensures that o(Q ∪ [AonB]U , B) = A.

Dealing with the weakly favorable component

Lemma 5.52. Let C be a connected component of SF that is weakly favorable, then o(PC ∪ [AoA], B) = A.
Moreover, Alice can play to ensure that after each of her move, there is an A-pairing.

126

Proof. Recall that by Observation 5.40, there is A-pairing in any bounded path [XonY] except if X = Y = B
and n is odd.

Assume first that C is a fork. Let c be the center of C, a1 the neighbor of c on the path to v0 and a2 the
vertex between a1 and v0. Let b1 be another neighbor of c and b2 the other neighbor of b1. We prove the result
by induction on the number of branches in the fork. Note that by Lemma 1.78, asN [a2]\N [Vt] ⊂ N [a1]\N [Vt]
for t ∈ {A,B}, a1 is always a better move than a2, thus we can suppose that it will not be played as next
move.

• if Bob claims c, then Alice replies in a1. Since there is a double B-trap and an A-pairing, disjoint from
the traps, Alice wins by Lemma 5.14. Moreover, by following the pairing strategy, she will keep the
fact there is always an A-pairing.

• If Bob claims b1, then Alice replies in b2. If there are strictly more than three branches, the position is
still a fork where the center is dominated by Bob (which is still weakly favorable). The result is true
by induction. If there were exactly three branches, then the actual position is ((PC ∪ [AoA])b2,b1 , B) =
([Ao5B]{2,3} ∪ [AoA], B). By Lemma 5.51, o((PC ∪ [AoA])b2,b1 , B) ≥ o([AoA], B) = A. Furthermore,
there is A-pairing by Observation 5.40.

• If Bob claims b2, then Alice replies in b1. If there are strictly more than three branches, then Alice
follows the strategy with one less branch. Since she dominates one more vertex, it can only be better
for her. If there are exactly three branches, we have as before:

o((PC ∪ [AoA])b1b2 , B) ≥ o([Ao5B]{2,3} ∪ [AoA], B) ≥ o([AoA], B) = A.

• If Bob claims a1 , then Alice replies by claiming c. We have

o((PC ∪ [AoA])c,a1 , B) = o([Ao2B] ∪ ... ∪ [Ao2B] ∪ [AoA], B) ≥ o([AoA], B) = A.

There is an A-pairing by pairing together the two vertices belonging to the same paths.

• If Bob claims v−1, then Alice replies by claiming c. We have

o((PC ∪ [AoA])c,v−1
, B) ≥ o([Ao2A]{2} ∪ [Ao2B] ∪ ... ∪ [Ao2B], B) ≥ o([Ao2A]{2}, B) = A.

Again, there is an A-pairing by pairing together the two vertices belonging to the same paths.

Assume now that PC is a bounded path. Alice will never let components of the form [Bo2ℓ+1B] to Bob
and thus there will always be an A-pairing. Assume first that PC has length 9. We just need to prove that
Alice has a strategy in the worst case, that is for U = {2, 3, 5, 7}. Thus, let PC = [Ao9B]{2,3,5,7}. Note that
by Lemma 1.78, as N [v1] \N [Vt] ⊂ N [v2] \N [Vt] for t ∈ {A,B}, v2 is always a better move than v1, thus we
can suppose that it will not be played as next move.

• If Bob claims v1 or v2, then Alice replies in v3. We have

o(([Ao9B]{2,3,5,7})v3,v1
∪ [AoA]), B) ≥ o([Ao6B]{2,4} ∪ [AoA], B) ≥ o([AoA], B) = A,

where the last inequality comes from Lemma 5.51.

• If Bob claims v3, then Alice replies in v2. Then o((PC ∪ [AoA])w2,w3
, B) = A since there are two

B-traps and an A-pairing.

• If Bob claims vi, 4 ≤ i ≤ 8, then Alice replies in vi+1. The resulting position has outcome

o([Aoi−1B]{2,3,5,7} ∪ [Ao9−i−1B]7−i−1 ∪ [AoA], B) ≥ o([AoA], B) = A,

where the last inequality comes from two applications of Lemma 5.51 (since both created paths satisfy
hypotheses of Lemma 5.51).

127

• If Bob claims v9 , then Alice replies in v8. The resulting position has outcome

o([Ao7A]{2,3,5,7} ∪ [AoA], B) ≥ o([Ao7B]{2,3,5} ∪ [AoA], B) ≥ o([AoA], B) = A,

where the last inequality comes from two applications of Lemma 5.51.

• If Bob claims v−1, then Alice replies in v3. We have

o(([Ao9B]{2,3,5,7} ∪ [AoA])v3,v−1
, B) ≥ o([Ao6B]{2,4} ∪ [Ao2A], B) ≥ o([Ao2A], B) = A,

where the last inequality comes from Lemma 5.51.

Assume now that PC has length 11. As before, we can assume that PC = [Ao11B]{2,3,5,9}.

• If Bob claims vi, 1 ≤ i ≤ 8, then it can be done like for a path of length 9.

• If Bob claims v9, then Alice replies in v8,

– If now Bob claims v3, then Alice replies in v2, creating two B-traps, in v−1 and v1. Thus
o(Qv2,v3 , B) = A, by Lemma 5.14,

– If now Bob claims v5, then Alice replies in v6, creating two B-traps, in v−1 and v8. Thus
o(Qv6,v5 , B) = A, by Lemma 5.14

– If now Bob claims v10 (or v11) , then Alice replies in v11 (or v10). The resulting position is
equivalent to [Ao7A]{2,3,5} ∪ [AoA], and, from Lemma 5.51,

o([Ao7A]{2,3,5} ∪ [AoA], B) ≥ o([AoA], B) = A.

.

– If now Bob claims vi , with i ∈ {−1, 1, 2, 4}, then Alice replies in v3. Afterward Alice can dominate
with two more claims, one in {v5, v6}, one in {v10, v11}, whatever the strategy of Bob; therefore
Alice dominates before Bob

– If now Bob claims vi , with i ∈ {6, 7}, then Alice replies in v5. Afterward Alice can dominate
with two more claims, one in {v2, v3}, one in {v10, v11}, whatever the strategy of Bob; therefore
Alice dominates before Bob.

• if Bob claims in v10, then Alice replies in v11, which reduces the problem to the previous case with 9
vertices.

• If Bob claims v11, then Alice replies in v10. The resulting position is equivalent to to [Ao9A]{2,3,5,9} ∪
[AoA], and by Observation 5.41, we have

o([Ao9A]{2,3,5,9} ∪ [AoA], B) ≥ o([Ao9B]{2,3,5} ∪ [AoA], B) = A,

as seen before.

• If Bob claims v−1, then Alice replies in v3. We have

o(([Ao11B]{2,3,5,9} ∪ [AoA])v3,v−1
, B) ≥ o([Ao8B]{2,6} ∪ [Ao2A], B) ≥ o([Ao2A], B) = A,

where the last inequality comes from Lemma 5.51.

128

A stable class of positions

In order to define our stable class C1, we first define the class C0, that informally corresponds to the positions
derived from a weakly favorable position when Alice follows a winning strategy.

Definition 5.53 (C0). The class C0 is defined recursively as follows. A position P is an element of C0 if:

• P = PC where C is a weakly favorable component;

• there exists P ′ ∈ C0, with two unclaimed vertices x and y, such that P = P ′
x,y and o(P ∪ [AoA], B) = A.

Next corollary is a direct application of Lemma 5.52.

Corollary 5.54. For each P ∈ C0, we have o(P ∪ [AoA], B) = A.

We can now define the stable class of positions C1. Intuitively, C1 corresponds to all the reachable position
from skeletons S containing only favorable positions and at most one weakly favorable position, after having
removed strongly favorable positions.

Definition 5.55 (C1). A position P belongs to the class C1 if P is the union of the following positions:

1. at most one position in C0.

2. a union of positions of the type [AonB]{2,5,n−2} n ≥ 9, n odd.

3. a union of k positions of the type [Bo2tB]{2t−2}, t ≥ 1,

4. a union of k′ positions of the type [AonA]{2,5}, with k′ ≥ k and n ≥ 1.

Remark 5.56. By definition, each position formed by at most one weakly favorable position and some
positions of the alternative 1.d of Definition 5.43 is an element of C1.

Next corollary is a direct application of Lemma 5.52 and Observation 5.40.

Corollary 5.57. For each P ∈ C1, P admits an A-pairing.

We will now prove that the class C1 (with a trap [AoA] adjoined) is either stable after Alice’s answer
to Bob’s claim, or directly winning for Alice. We will consider the two cases according to whether Bob
claims the unclaimed vertex v−1 of [AoA] or not. The first case where Bob does not claim v−1 is proved by
Lemma 5.59 that requires Claim 5.58. The second case is when Bob claims v−1 and is solved by Lemma 5.61
that requires Claim 5.60 as a particular case.

Claim 5.58. Let Q be any position, and t be a positive integer. Let (w1, w2, ..., w2t) be the unclaimed vertices
of [Bo2tB]{2t−2}. For each wi, there exists wj ̸= wi and 0 ≤ t′ < t such that

o(Q ∪ [Bo2t
′
B]{2t

′−2}, B) ≤ o(Q ∪ [Bo2tB]{2t−2}
wj ,wi

, B)

(with the convention that [Bo0B]{−2} is empty).

The idea behind this claim is that if a position contains a bounded path [Bo2tB]{2t−2} and Bob claims a
vertex in it, then Alice can reply in the same bounded path, preserving the global structure of the position.

Proof. We have three cases.

• If i = 2t then Alice claims w2t−1, using Observations 5.41 and 5.42, we have

o(Q ∪ ([Bo2tB]{2t−2})w2t−1,w2t
, B) = o(Q ∪ [Bo2t−2A]{2t−2}, B)

≥ o(Q ∪ [Bo2t−2B], B)

≥ o(Q ∪ [Bo2t−2B]{2t−4}, B)

129

• If i = 2k, 1 ≤ k < t, then Alice claims w2k−1. We have

o(Q ∪ [Bo2tB]{2t−2}
w2k−1,w2k

, B) = o(Q ∪ [Bo2k−2A] ∪ [Bo2(t−k)B]{2(t−k)−2}, B).

Lemma 5.51 applies, and we get

o(Q ∪ [Bo2tB]{2t−2}
wj ,wi

, B) ≥ o(Q ∪ [Bo2(t−k)B]{2(t−k)−2}, B).

• If i = 2k − 1, 1 ≤ k ≤ t, then Alice claims w2k. We have

o(Q ∪ [Bo2tB]{2t−2}
wj ,wi

, B) = o((Q ∪ [Bo2k−2B] ∪ [Ao2(t−k)B]{2(t−k)−2}, B),

Lemma 5.51 applies, and we get

o(Q ∪ (Bo2tB]{2t−2}
wj ,wi

, B) ≥ o(Q ∪ [Bo2k−2B], B) ≥ o(Q ∪ [Bo2k−2B]{2k−4}, B).

Lemma 5.59 (Bob does not claim v−1). Let P ∈ C1, such that P is not dominated by Alice. Let Q =
P ∪ [AoA] and y be an unclaimed vertex of P . There exists an unclaimed vertex x ̸= y such that at least one
of the following alternatives holds:

• o(Qx,y, B) = A;

• or there exists P ′ ∈ C1 with at least two unclaimed vertices less than P , such that o(P ′ ∪ [AoA], B) ≤
o(Qx,y, B).

Proof. We denote by v−1 the unclaimed element of [AoA] in Q. We assume that Bob claims y. We have
several cases, according to the component that contains y.

• Assume first that y is an element of the component P ′ of P that belongs to C0. If there exists a free
vertex x of P ′ such that P ′

x,y ∈ C0, then we are done, since Px,y ∈ C1.
Otherwise, by definition of C0, (P ′ ∪ [AoA], B) is a win for Alice. Since there is no winning answer
in P ′ for Alice to the claim y of Bob, we necessarily have o((P ′ ∪ [AoA])v−1,y, B) = A. From the
position (P ′ ∪ [AoA])v−1,y, Bob cannot dominate the whole graph. Alice can follow her strategy on
(P ′ ∪ [AoA])v−1,y and a pairing strategy on the rest of the graph (that exists by Corollary 5.57). This
ensures that o(Qv−1,y, B) = A

• Assume now that y is an unclaimed vertex of [AonB]{2,5,n−2}, with n odd, n ≥ 9. Let (w1, w2, ..., wn)
be the sequence of free vertices of [AonB]{2,5,n−2}. By Lemma 1.78, as N [w1] \N [Vt] ⊂ N [w2] \N [Vt]
for t ∈ {A,B}, one can assume that y ̸= w1. Let P

′ be the position such that P = P ′∪ [AonB]{2,5,n−2}

and let Q′ = P ′ ∪ [AoA]. Note that P ′ ∈ C1.

– If y = w2 then take x = w3. By Lemma 5.8, Observation 5.6 and Lemma 5.51,

o(Qx,y, B) ≥ o(Q′ ∪ [Aon−3B]{2,n−5}, B) ≥ o(Q′, B).

– If y = w3, then take x = w2. There is double B-trap in Qw2,w3 . Thus, by Lemmas 5.14 and 5.57,
we have o(Qw2,w3 , B) = A.

– If y = wi i ≥ 4 with i even, then take x = wi+1 We have

o(Qx,y, B) = o(Q′ ∪ [Aoi−1B]{2,5} ∪ [Aon−iB]{n−i−2}, B) ≥ o(Q′ ∪ [Aoi−1B]{2,5}, B)

by application of Lemma 5.51. Note that P ′ ∪ [Aoi−1B]{2,5} is an element of C1.

130

– if y = wi with i odd and i ≥ 5 then take x = wi−1. We have

o(Qx,y, B) = o(Q′ ∪ [Aoi−2A]{2,5} ∪ [Bon−iB]{n−i−2}, B).

Note that P ′ ∪ [Aoi−2A]{2,5} ∪ [Bon−iB]{n−i−2} is an element of C1, since n− i is even and since
we add a position [Aoi−2A]{2,5}.

• If y is an unclaimed vertex of a component of the form [Bo2tB]{2t−2}, then the position can be reduced
by Claim 5.58.

• Assume now that y is an unclaimed vertex of [AonA]{2,5}. As before, we denote by (w1, w2, ..., wn)
the vertices of [AonA]{2,5}, by P ′ the position P without the component [AonA]{2,5} and by Q′ the
position P ′ ∪ [AoA]. If n ≤ 3, then take x = v−1. We have o(Qv−1,y, B) = A since the position Qv−1,y

admits a A-pairing by Corollary 5.57 and Bob. Thus, it can be assumed that n ≥ 4.

– If y ∈ {w1, w2}, then take x = w3. We have

o(Qw3,y, B) ≥ o(Q′ ∪ [Aon−3A]{2}, B).

Note that P ′ ∪ [Aon−3A]{2} is in C1.
– If y = w3, then take x = w2. The position Qw2,w3

admits an A-pairing, by Corollary 5.57. Thus,
by lemma 5.14, we have o(Qw2,w3

) = A.
– if y = wi, with i ≥ 4, then take x = wi−1. We have

o(Qx,y, B) = o(Q′ ∪ [Aoi−2A]{2,5} ∪ [Aon−iB], B) ≥ o(Q′ ∪ [Aoi−2A]{2,5}, B)

according to Lemma 5.51. We are done since P ′ ∪ [Aoi−2A]{2,5} is in C1.

Claim 5.60. Let P be any position, and t be a nonnegative integer. We have

o(P ∪ [AoA], B) ≤ o(P ∪ [AooAooA]{2,5} ∪ [Bo2tB]{2t−2}, B)

where [AooAooA]{2,5} is the position obtained from [Ao5A]{2,5} by adding the central vertex v3 in the set VA.

Proof. Let (w1, w2, ..., w2t) be the sequence of unclaimed vertices of [Bo2tB]{2t−2}, (v1, v2, v4, v5) the sequence
of unclaimed vertices of [AooAooA]{2,5}, from left to right, and v−1 denote the unclaimed vertex of [AoA].
To lighten notation, we also state R = P ∪ [AooAooA]{2,5} ∪ [Bo2tB]{2t−2}

Assume that o(P ∪ [AoA], B) = A. We prove that o(R,B) = A by induction on the number p of
unclaimed vertices of R. For initialization, if p ∈ {4, 5}, then t = 0 and all the vertices of P are claimed
except possibly one. Thus, since o(P ∪ [AoA], B) = A, Alice dominates P , and therefore Alice dominates
R = P ∪ [AooAooA]{2,5}.

Now assume that p ≥ 6. We have several alternatives according to the claim y of Bob in R.

• If y is an unclaimed vertex of [Bo2tB]{2t−2}, then Claim 5.58 applies, and the induction gives the
result.

• Assume now that y is an unclaimed vertex of P . If there exists an unclaimed vertex x of P such that
o(Px,y ∪ [AoA], B) = A. We conclude by the induction hypothesis. If it is not possible, it means that
once Bob has claimed y in the position P ∪ [AoA], Alice is forced to claim v−1. Then, in R, Alice
claims v2, creating a double B-trap in v1 and v4.

In the position ((P ∪ [AoA])v−1,y, B), Alice has a strategy which allows her to dominate P . Thus, Alice
can win in Rv2,y playing component by component, until, the game ends as follows:

– If Bob claims in P , Alice also claims in P according to the strategy in ((P ∪ [AoA])v−1,y, B).

– If Bob claims in [AooAooA]{2,5}, then Alice isolates one vertex using one of the B-trap.

131

– If Bob claims in [Bo2tB]{2t−2}, Alice follows a pairing strategy with the A-pairing of this compo-
nent.

This way, Alice will prevent Bob to dominate since Bob has to claim at some point in [AooAooA]. The
two other items ensure that Alice while dominate the whole graph.

• Assume finally that y is an unclaimed vertex of [AooAooA]. The position (P,A) has outcome A since it
corresponds to the position (P ∪ [AoA], B) where Bob has claimed v−1. Let x be an unclaimed vertex
of P such that o(Px, B) = A, where Px is the position obtained from P when Alice has claimed x.
Alice answers x in the game R. We prove that o(Rx,y, B) = A. Alice plays as follows:

– If Bob claims a vertex in Px, Alice answers in Px according to her strategy in (Px, B).

– If Bob claims a vertex in [Bo2tB]{2t−2}, then Claim 5.58] can be used.

– If Bob claims again a vertex in [AooAooA], Alice claims w1.

The first item ensures that Alice dominates P before Bob. The second item ensures that the fact that
Bob claims in the component [Bo2tB]{2t−2} is irrelevant. In the case of third item, one can consider
using Lemma 5.51 that the component [Bo2tB]{2t−2} disappears. The component [AooAooA] becomes
also irrelevant since each player dominates all vertices of this component. Thus, it remains only the
component derived from Px where Alice dominates before Bob.

Lemma 5.61 (Bob claims v−1). Let P ∈ C1 such that P is not dominated by Alice and Q = P ∪ [AoA].
There exists an unclaimed vertex x of P such that at least one of the following alternatives holds:

• o(Qx,v−1 , B) = A,

• there exists P ′ ∈ C1 with at least one unclaimed vertex less than P , such that o(P ′ ∪ [AoA], B) ≤
o(Qx,v−1

, B).

Proof. We have different cases according to the structure of P .

• If P contains a component [AonB]{2,5,n−2}, n ≥ 9, n odd, let v1, v2, ..., vn denote the sequence of free
vertices of this component. Take x = v2. Let P ′ be the position such that P = P ′ ∪ [AonB]{2,5,n−2}

and let Q′ = P ′ ∪ [AoA]. Note that P ′ ∈ C1.
We now have

o(Qv2,v−1
, B) ≥ o(Q′ ∪ [Aon−2B]{3,n−4}, B) ≥ o(Q′, B)

from Lemma 5.51.

• If P contains a component [AonA]{2,5}, let w1, w2, ..., wn denote the sequence of vertices of [AonA]{2,5}.
Let P ′ be the position such that P = P ′ ∪ [AonA]{2,5} and let Q′ = P ′ ∪ [AoA].

– If n ≥ 6, then take x = wn−1. We have

o(Qwn−1,v−1
, B) ≥ o(Q′ ∪ [Aon−2A]{2,5}, B)

and note that P ′ ∪ [Aon−2A]{2,5} is an element of C1.
– If 3 ≤ n ≤ 4, then take x = w2. We have

o(Qw2,v−1
, B) ≥ o(Q′ ∪ [Aon−2A], B)

and we conclude as previously.

– If n = 1, then take x = w1, isolating a vertex for Bob. The position Qw1,v−1
admits an A-pairing

from Corollary 5.57. Thus, from 5.13, we have o(Qw1,v−1
, B) = A.

132

– If p = 5 and k ≥ 1, take x = w3, which creates an [AooAooA]. We define P ′′ such that

P ′ = P ′′ ∪ ([Bo2tB]{2t−2}).

Note that P ′′ ∈ C1 as one component of each type 3 and 4 (in Definition 5.55)) has been removed.
Lemma 5.60 applies, thus

o(P ′′ ∪ [AoA], B) ≤ o(P ′′ ∪ [AooAooA]{2,5} ∪ [Bo2tB]{2t−2}, B) = o(Qw3,v−1
, B)

• If P cannot be treated in one of the previous cases, then P only contains some subpositions of the type
[Ao5A]{2,5} and at most one position P0 ∈ C0. In this case, we will prove that o(Q,B) = A, which
implies the result.

First we have o([Ao5A]{2,5}, B) = A. Indeed, Bob is forced to claim w3, since otherwise Alice claims
w3 and wins. After this claim, there exists an A-pairing of size 2, while Bob needs at least two more
claims to dominate the graph. Thus Q = P ∪ [AoA] is formed by a union of winning positions (when
Bob starts): one is P0 ∪ [AoA] (or simply [AoA] if P0 does not exist) and the other ones are positions
[Ao5A]{2,5}. Thus, by Observation 5.7, we get o(Q,B) = A.

Corollary 5.62. For each position P ∈ C1, we have o(P ∪ [AoA], B) = A.

Proof. We prove the result by induction on the number of unclaimed vertices in Q = P ∪ [AoA]. If Alice
dominates P , then we directly have o(P ∪ [AoA], B) = A. Otherwise, consider a move x of Bob. If x ̸= v−1

(respectively x = v−1), then by Lemma 5.59 (resp. Lemma 5.61), there exists an unclaimed vertex y of
P such that either Alice wins or there exists a position P ′ of C1 with less unclaimed vertices such that
o(P ′ ∪ [AoA], B) ≤ o(Qx,y, B). By induction, o(P ′ ∪ [AoA], B) = A and thus o(Qx,y, B) = A.

Thus, for any claim x of Bob, Alice can claim a vertex y such that o(Qx,y, B) = A. Therefore, o(Q,B) =
A.

Conclusion

Putting together all the previous results, we can prove the reverse part of Theorem 5.44:

Corollary 5.63. If all the components of SF are favorable to Alice and at most one of them is weakly
favorable, then o((F, {v0}, ∅), B) = A.

Proof. Let Q = (F, {v0}, ∅) be a position such that all the components of SF are favorable to Alice and at
most one of them is weakly favorable. By Lemma 5.51, one can assume that there is no strongly favorable
component in SF . Let P such that Q = P ∪ [AoA]. By Remark 5.56, P is an element of C1. Corollary 5.62
leads to the desired result.

5.6 Further work

Although the provided algorithm and its proof are more complicated than in the Maker-Breaker version
of the game, we manage to prove that the winner of the Maker-Maker domination game in forests can be
computed in polynomial time. The last result listed in [DGPR20] that currently has no version in Maker-
Maker is the polynomial algorithm for computing the winner in cographs. We only know that Alice wins in
connected cographs, but since the union is hard to handle in Maker-Maker games, we have not managed to
get a result for disconnected cographs. Finally, in Maker-Breaker, the presence of a paired dominating set
provides a winning strategy for Maker, while as we saw before, it is not enough in Maker-Maker, even in
cycles. However, we proved that if a graph G has a pairing dominating set of order γ(G), Alice wins. Since
this constraint is very strong, one can wonder if it is possible to find another sufficient condition for having
a graph on which Alice wins, but with fewer constraints.

133

Another direction to pursue the study is to now focus on the parameterized complexity of the Maker-
Maker convention, as it was done in the previous chapter for Maker-Breaker. Since the winner of the Maker-
Maker domination game can also be computed in polynomial time on trees, considering its parameterized
complexity by the feedback edge set should be the next step. Note, however, that it should be more difficult
here, since we cannot reduce long induced paths as easily as in the Maker-Breaker convention, since even for
one cycle, the outcome changes with this operation.

134

Chapter 6

Scoring positional games

Keep reading, you’re almost done.

Until now, we considered positional games in their standard definition, i.e the game could end whenever
Maker filled up a hyperedge. In this chapter, we extend the study of positional games to handle scores.
Indeed, several games, as Dots and boxes, or the largest connected subgraph game are very close to positional
games, but are not, as both players aim to maximize their score instead of just filling up one hyperedge.
Therefore, we present in this chapter scoring positional games, which consist in playing on a hypergraph
until all the vertices are claimed, and by defining the score as the number of hyperedges a player has filled
up. In the Maker-Breaker convention, the score is defined as the number of hyperedges filled up by Maker,
whereas in the Maker-Maker convention, it is the difference between the number of hyperedges filled up by
the two players.

In Section 6.1, we present the general framework of scoring games. In particular, we present Milnor’s
universe as the natural universe to handle scoring positional games. In Section 6.2, we give some general
results about scoring positional games. In the rest of this chapter, we focus on the game Incidence, the
scoring positional game played on 2-uniform hypergraphs. We prove in Section 6.3 that the score of Maker-
Maker Incidence is computable in polynomial time. In Section 6.4, we give some general results about
Maker-Breaker Incidence, by adapting some known results from general Maker-Breaker games, such as
Erdős-Selfridge’s criterion or the Super Lemma. In Section 6.5, we prove that, contrary to the Maker-Maker
convention, computing the score in Maker-Breaker Incidence is PSPACE-complete. Finally, in Section 6.6 we
provide several equivalences on paths, that allow us to compute the score on paths and cycles.

This work was a collaboration with Guillaume Bagan, Quentin Deschamps, Eric Duchêne, Bastien Durain,
Brice Effantin, Valentin Gledel and Aline Parreau. It has been published in Discrete Mathematics [BDD+23].

6.1 Scoring combinatorial games

Scoring games have been introduced in the 1950s by Milnor [Mil53] and Hanner [Han59]. Their study
was almost forgotten until the 2000s, when different formalisms for such games have been introduced by
Ettinger [Ett96], Stewart [Ste12], or Larsson, Nowakowski and Santos [LNS15b]. Therefore, scoring game
have been introduced in the combinatorial game theory, and relates more to this structure than to the
structure of positional games. The survey paper [LNS15a] summarizes these different approaches.

In scoring games, two players, usually Left and Right, alternate moves with a score adjoined to the game.
Each move of a player can modify this score, Left aims at maximizing the score at the end of the game, while
Right tries to minimize it. Since scoring games are also finite perfect information games, if both players play
optimally, the score at the end of the game is well-defined and only depends on who starts.

Despite the fact that scoring games were less studied, mainly due to the difficulty to build a general
framework for them, particular scoring games on graphs have still been introduced recently. One can cite

135

the game Influence introduced by Duchêne [DGP+21] in 2021 which has been proven PSPACE-complete in
2024 [DOP24], or the largest connected subgraph game, introduced by Bensmail et al. [BFMIN22, BFM+23],
firstly as a scoring connection game, and then as a Maker-Breaker connection game. Nevertheless, there is
currently no general framework on scoring games on graphs, and we introduce here the framework of scoring
positional games to develop some general properties to handle some of them.

6.1.1 Definition of scoring positional games

Scoring positional games

Scoring positional games are played on hypergraphs by two players, Left and Right, with the same rules as
standard positional games. The only differences are the winning conditions. In a scoring positional game, the
game ends when all vertices have been claimed. A player’s score is then defined as the number of hyperedges
he manages to fill up. In the Maker-Maker convention, each player tries to both maximize his score and to
minimize his opponent’s score. In the Maker-Breaker convention, Maker (identified as Left) tries to maximize
her score while Breaker (identified as Right) tries to minimize the score of Maker. Note that we use Left
and Right here instead of Alice and Bob or Maker and Breaker, as these are the usual names of the players
in scoring games.

More formally, for any scoring game, two scores are defined depending on which player starts. Let
H = (X ,F) be a hypergraph. We define the score of H as follows:

• in the Maker-Maker convention, Ls(H) (resp. Rs(H)) is the difference between the number of hyper-
edges filled up by Left and the number filled up by Right when Left starts (resp. when Right starts)
and both players play optimally.

• in the Maker-Breaker convention, Ls(H) (resp. Rs(H)) is the number of hyperedges filled up by Left
when Left (resp. Right) starts and both players play optimally.

It is well-known in scoring game theory that these notions exist and are well-defined (by considering the
game tree of all the possible moves). Note that in the Maker-Maker convention, by symmetry of the roles
of both players, we have that Ls(H) = −Rs(H), so computing Ls(H) will be of sufficient interest. In the
Maker-Breaker convention, we have that Ls(H) and Rs(H) are nonnegative values by definition.

In addition, it will be helpful to consider the scores obtained after some vertices have been claimed.
Therefore, positions are defined here similarly to their definition in positional games. A position of a scoring
positional game is a triplet P = (H,XL,XR) such that XL and XR are disjoint subsets of vertices. The set
XL corresponds to the vertices claimed by Left whereas XR correspond to the vertices claimed by Right.
The set of remaining vertices will be generally denoted by XF . We have XF = X \ (XL ∪ XR). For both
conventions, we will denote by Ls(P) (resp. Rs(P)) the score of H if Left has already claimed the vertices of
XL, and Right the vertices of XR, when Left (resp. Right) is the next player to move on P . When XF ̸= ∅,
the scores at a position P can be recursively defined as follows:

Ls(P) = max
x∈XF

Rs(H,XL ∪ {x},XR)

Rs(P) = min
x∈XF

Ls(H,XL,XR ∪ {x}).

When XF = ∅, the score depends on the convention. In Maker-Maker convention,

Ls(P) = Rs(P) = |{e ∈ F|e ⊆ XL}| − |{e ∈ F|e ⊆ XR}|

whereas in Maker-Breaker convention, we have

Ls(P) = Rs(P) = |{e ∈ F|e ⊆ XL}|.

136

In the literature, there are few games that can be seen as scoring positional games. The famous Dots and
Boxes games [Ber00], that has recently be proven PSPACE-complete by Buchin et al. [BHKvM21], could be
an example, with the additional constraint that a player is forced to play again each time he gets points. By
removing this constraint, we get a pure example of the above definition (in the Maker-Maker convention),
and the game is known as Picarête [BDG06]. More recently, the Constructor-Blocker game introduced by
Patkos et al. [PSV23] in 2023, in which Constructor aims at maximizing the number of copies of a graph H
with a forbidden graph F , can be seen as a scoring Maker-Breaker game when F is empty.

6.1.2 Milnor’s universe

Properties of Milnor’s universe

In 1953 [Mil53], Milnor introduced a universe of scoring games having nice properties. This universe is the
one of dicotic nonzugzwang games:

• a game is dicotic if at any moment of the game, if a player can move, the other player can also move.

• a game is nonzugzwang if at any moment of the game, both players have no interest in skipping their
turn.

We say that a game belongs to Milnor’s universe if it satisfies these two properties.
Being in Milnor’s universe induces a couple of useful results concerning the sum operator and the equiva-

lence of games. The disjunctive sum operator + applied to scoring (positional) games G1 and G2 defines the
game G1 +G2 as the game in which a move consists in moving either in G1 or in G2. The game ends when
the moves in both components of the sum are exhausted. See [DOP24] for the formal definition. Note that
the sum of two scoring positional games, with the same convention, is still a scoring positional game with
hypergraph the disjoint union of the two hypergraphs. As game sums appear in many games when playing,
one could expect to simplify them by replacing large games by smaller ones. This leads to the notion of
equivalence of games:

Definition 6.1 (Milnor [Mil53]). Two scoring games G1 and G2 are equivalent (write G1 ≡ G2) if for any
game G, we have Ls(G+G1) = Ls(G+G2) and Rs(G+G1) = Rs(G+G2).

In other terms, one can always exchange G1 and G2 in any sum of games if they are equivalent. In
particular, games that are equivalent to the empty game can be removed from any sum of games.

Games belonging to Milnor’s universe form an Abelian group with the sum operator[Mil53]. In particular,
this implies that every game G in Milnor’s universe admits an inverse, i.e. a game G′ such that G+G′ ≡ 0
(where 0 is the empty game). More precisely, this inverse corresponds to the negative of G, denoted by −G,
i.e. the game where the roles of Left and Right are exchanged, together with their scores. Moreover, proving
equivalence in Milnor’s universe is greatly simplified, thanks to the next lemma.

Lemma 6.2 (Milnor [Mil53]). For any games G1 and G2 that are dicotic nonzugzwang, we have: Ls(G1 −
G2) = Rs(G1 −G2) = 0 if and only if G1 and G2 are equivalent.

More generally, a game G is a number k ∈ Z, and we write G = k, if we have Ls(G) = Rs(G) = k. The
following property holds with numbers:

Lemma 6.3 (Milnor [Mil53]). Let G be a game and k be a number. We have Ls(G+ k) = Ls(G) + k and
Rs(G+ k) = Rs(G) + k. Note that on the left side of the equality, k is a game, and on the right side, it is
an integer.

In addition, sums of games in Milnor’s universe can be bounded as follows:

Lemma 6.4 (Milnor [Mil53]). Let G1 and G2 be two dicotic nonzugzwang games, we have

Rs(G1) +Rs(G2) ≤ Rs(G1 +G2) ≤ Ls(G1) +Rs(G2) ≤ Ls(G1 +G2) ≤ Ls(G1) + Ls(G2).

Belonging to Milnor’s universe is a very strong property dealing with scoring games, and we prove here
that scoring positional games belong to this universe.

137

Partisan scoring positional games

In what follows, we will show that scoring positional games belong to Milnor’s universe. Yet, the negative of
a game cannot be defined in the Maker-Breaker convention, as the scores of Maker and Breaker can not be
interchanged naturally, by asymmetry of the definition of the score. Therefore, we have decided to embed
scoring positional games in a more general family that will be called Partisan scoring positional games. The
term partisan is derived from standard combinatorial games [Ber00], meaning that Left and Right may have
different moves (and also different ways of scoring points).

A partisan scoring positional game is played on a hypergraph H whose hyperedges are either colored
blue, red or green. The two players, Left and Right, alternatively claim vertices of H. The score of Left
corresponds to the blue and green hyperedges she claimed, whereas the score of Right corresponds to the
red and green ones. As previously, the score of the game (Ls(H) and Rs(H), depending on who starts) is
the difference between the score of Left and Right.

Partisan scoring positional games include both Maker-Maker and Maker-Breaker scoring positional games.
Even more, the convention can be omitted, as it is deduced by the colors of the hypergraph. Indeed, if all
the hyperedges are green, it means that both players can score any hyperedge, which corresponds to the
Maker-Maker version. If all the hyperedges are blue, it corresponds to the Maker-Breaker convention, as
only Left can get points. According to this definition, the negative of a partisan scoring positional game
is well-defined, as it suffices to exchange the colors blue and red in the hyperedges, as well as the vertices
already chosen by Left and Right (if any).

We will now give several general results about partisan scoring positional games. By inclusion, these
results will also concern scoring positional games. First, we will prove that they belong to Milnor’s universe
and thus satisfy Lemma 6.2.

Lemma 6.5. Partisan scoring positional games belong to Milnor’s universe.

Proof. Let H = (X ,F) be a hypergraph with hyperedges colored blue, red and green, and XL,XR ⊂ X be
vertices already claimed by Left and Right respectively such that XL ∩ XR = ∅.

A partisan scoring positional game is dicotic: if XL ∪ XR = X , then no moves are available, neither for Left
nor for Right. Otherwise, let v ∈ X \ {XL ∪ XR} . Both Left and Right are allowed to play v as it is an
unclaimed vertex. Therefore, the game is dicotic.

A partisan scoring positional game is nonzugzwang: We need to prove that Ls(H,XL,XR) ≥ Rs(H,XL,XR).
Let k = Rs(H,XL,XR) with XL,XR vertices already claimed in H by Left and Right respectively. If
XL ∪ XR = X , we have Ls(H,XL,XR) = Rs(H,XL,XR) = k as there is no move available in H. Otherwise,
let S be an optimal strategy for Left when Right starts. We define a strategy S ′ for Left when she starts as
follows:

• Left considers an arbitrary unclaimed vertex v0 of the graph, and plays the vertex she would have
played in S if Right plays v0.

• Whenever, Right plays a vertex w in X \{v0}, she plays the vertex she would have played in S if Right
has played w in S after having played v0 on first move.

• If Right plays v0, she considers an arbitrary unclaimed vertex v1 in the graph, and continues this
strategy by supposing that Right has played v1 instead of v0. More generally, when Right claims the
vertex vℓ, she considers an unclaimed vertex vℓ+1 and considers that Right has claimed vℓ+1 instead.

• At the end, if she needs to consider that Right has played a vertex vℓ and no other vertex is available,
she plays vℓ.

Following this strategy, all the vertices Left would have played in S if Right has played the vertices
vis she has considered, have been played in S ′ by Left. Similarly, the vertices that Right have played in

138

S ′ are a subset of the one he would have played in S. Therefore, as S was an optimal strategy in H
when Right starts, this strategy ensures that Left scores at least k = Rs(H,XL,XR). Finally, we have
Ls(H,XL,XR) ≥ k = Rs(H,XL,XR), and the game is nonzugzwang.

As the game is nonzugzwang and dicotic, it belongs to Milnor’s universe.

Belonging to Milnor’s universe will be the main tool of the proofs of Section 6.6.

6.1.3 Incidence

In most of this chapter, we will mainly focus on an example of scoring positional game that is called Incidence.
It corresponds to the game played on a hypergraph where all hyperedges are of size two. In others terms, this
game can be defined as follows on a simple graph G = (V,E). Alternately, two players claim an unclaimed
vertex of V . When all the vertices have been taken, the score of a player is defined as the number of edges
in the subgraph of G induced by the vertices he claimed.

Hence, in both conventions, Left (that is always Maker) aims at collecting points by claiming the two
extremities of an edge. The main difference concerns the role of Right, that aims at touching the maximum
number of edges (hence prohibiting a maximum number of points for Left) in the Maker-Breaker convention.
See Figure 6.1 for an example of computations of the score at the end of a game.

R

R

L

L

L

Figure 6.1: A position P of Incidence. In Maker-Maker convention, we have Ls(P) = 4 − 2 = 2 and
Rs(P) = 3 − 2 = 1 as both player wants to claim the unclaimed vertex on the left. In Maker Breaker
convention, we have Ls(P) = 4 and Rs(P) = 3 as Left has already the two extremity of three edges, and
she can take one more only if she is the next player to move.

6.2 General results on scoring positional games

In this section, we present the first results on scoring positional games. First, as a more general instance of
positional game, we prove that computing the score is PSPACE-complete. Then, we bound the score in the
general case.

6.2.1 General complexity of scoring positional games

To deal with the complexity of scoring positional games, we must first formally define what a scoring
positional game is.

Definition 6.6 (Maker-Breaker Scoring Positional Game). Let H = (X ,F) be a hypergraph. A Maker-
Breaker Scoring Positional Game is played by two players, Left and Right. Left and Right take turns claiming
an unclaimed vertex of X with Left starting. The score of the game is defined as the number of hyperedges
filled up by Left.

Definition 6.7 (Maker-Maker Scoring Positional Game). Let H = (X ,F) be a hypergraph. A Maker-
Maker Scoring Positional Game is played by two players, Left and Right. Left and Right take turns claiming
an unclaimed vertex of X with Left starting. The score of the game is defined as the difference between the
number of hyperedges filled up by Left and the one filled up by Right.

139

First, note that in Maker-Breaker, Left scores at least one means that she manages to fill up a hyperedge.
The following lemma is a straightforward application of Theorem 1.64. A result for hypergraphs of lower
ranks will be provided is Section 6.5.

Lemma 6.8. Determining whether Maker can score at least k in a Maker-Breaker Scoring Positional Game
is PSPACE-complete, even restricted to 6-uniform hypergraphs and k = 1.

Proof. Let H be a hypergraph.
Maker wins the Maker-Breaker positional game on H if and only if Left can score at least 1 on H. By

Theorem 1.64, it is PSPACE-complete to determine whether Maker wins on H.

6.2.2 Bounds on the score

In this section, we provide bounds on the score in both Maker-Maker and Maker-Breaker convention.

Bounds in Maker-Maker convention

We start by providing a bound in Maker-Maker convention, using the maximal degree of the hypergraph. Let
H be a hypergraph. Similarly to graphs, we define the degree of a vertex v of H as the number of hyperedges
containing v. We denote by ∆(H) the maximal degree of H.

Lemma 6.9. Let H be a hypergraph. In the Maker-Maker scoring positional game on H, we have −∆(H) ≤
Rs(H) ≤ 0 ≤ Ls(H) ≤ ∆(H).

Proof. As noticed in Section 6.1.1, we have Ls(H) = −Rs(H) in the Maker-Maker convention since players
have symmetric roles. Since the game is nonzugzwang, we also have Ls(H) ≥ Rs(H) which implies that
Rs(H) ≤ 0 ≤ Ls(H).

To prove the upper bound with ∆(H), we just need to prove that Ls(H) ≤ ∆(H). Let v0 be the first
vertex played in an optimal strategy. Consider the hypergraph H′ obtained from H by removing v0 and all
the hyperedges containing it. If the second player applies the optimal strategy for H′ during the rest of the
game, he will score at least Rs(H′) ≤ 0 on it and the final score will be at most |{e|v0 ∈ e}|+Rs(H′). Thus,
we have Ls(H) ≤ deg(v0) +Rs(H′) ≤ ∆(H).

We do not think that the upper bound in Lemma 6.9 is tight if the hypergraph is simple (i.e. there
are no two hyperedges that contain exactly the same vertices). Actually, the best example we know in this
case is a hypergraph H having a universal vertex x, a hyperedge with x alone and ∆ − 1 hyperedges of

size 2 containing x and another unique vertex, see Figure 6.2. For this hypergraph, Ls(H) = ⌊∆(H)+1
2 ⌋.

Furthermore, we will prove that for 2-uniform hypergraphs (i.e. graphs), the score is at most ∆(H)/2 (see
Corollary 6.15). We believe that this bound remains true in any hypergraph:

Figure 6.2: A hypergraph satisfying Ls(H) = ⌊∆(H) + 1

2
⌋ in Maker-Maker convention

Conjecture 6.10. Let H be a simple hypergraph. In the Maker-Maker scoring positional game on H, we

have Ls(H) ≤ ∆(H) + 1

2
.

140

Bounds in Maker-Breaker

In Maker-Breaker convention, the bound from Lemma 6.9 is not valid anymore. Indeed, the score can actually
be linear with the number of vertices of the hypergraph, even if the maximal degree is constant. Next, we
derive a general tight bound, based on the same principle used to prove the Erdös-Selfridge criterion [ES73].
Some tight examples will be given in Section 6.4 for 2-uniform hypergraphs (see Corollary 6.16).

The main idea to prove Theorem 1.25 (from Erdős and Selfridge) is that if the hyperedges are large
enough, Breaker will have the time to play in all of them before Maker can fill one. A similar idea can be
introduced when dealing with scores by computing how many hyperedges Breaker can touch. The strategy
used relies on a greedy strategy by introducing a potential function, as it was done by Erdős and Selfridge.
Let H = (X ,F) be a hypergraph. We denote by ℓ(H) the maximum number of hyperedges that contain a
fixed pair of vertices. More formally, ℓ(H) = max

x,y∈X 2
|{e ∈ F|x, y ∈ e}|.

Theorem 6.11. Let H = (X ,F) be a hypergraph. In the Maker-Breaker convention, we have Ls(H) ≥∑
e∈F

2−|e| − nℓ(H)
8 , and Rs(H) ≤

∑
e∈F

2−|e|.

Proof. Let (H,XL,XR) be any position of a Maker-Breaker scoring positional game. We introduce the
potential function:

P (H,XL,XR) =
∑

e∈F,e∩XR=∅

2−|e\XL|.

In this function, only hyperedges not played by Right are considered, and we only count the number of free
vertices in the edge. Note that at the beginning of the game, P (H, ∅, ∅) =

∑
e∈F

2−|e|. At the end of the game,

X = XL ∪ XR and P (H,XL,XR) = |{e ∈ F|e ∩ XR = ∅}| is the final score. Furthermore, when a vertex v is
played by Maker (respectively Breaker), the potential is increasing (resp. decreasing) by the quantity

δP (H,XL,XR, v) =
∑

e|e∩XR=∅,v∈e

2−|e\XL|.

Let S be a strategy for Maker consisting in maximizing P at each move, i.e. Maker chooses the vertex
v that maximizes δP (H,XL,XR, v). We prove that this strategy provides the desired bound. Suppose first
that Maker starts. Suppose XL and XR have already been played by Maker and Breaker respectively. Let vL
the vertex played by Maker according to S and vR the vertex played by Breaker after this move. As Maker
has played vL and not vR, we have, before vL was played, δP (H,XL,XR, vL) ≥ δP (H,XL,XR, vR).

However, δP (H,XL ∪ {vL},XR, vR) might be larger than δP (H,XL,XR, vR) after vL was played if there
exist some hyperedges that contain both vL and vR. We actually have:

δP (H,XL ∪ {vL},XR, vR) = δP (H,XL,XR, vR) +
∑

e∩XR=∅,vL,vR∈e

2−|e\XL|

≤ δP (H,XL,XR, vR) +
ℓ(H)
4

.

Last inequality comes from the fact that e \ XL must contain vL and vR and thus has size at least 2.
Therefore, we have

P (H,XL ∪ {vL},XR ∪ {vR}) = P (H,XL,XR) + δP (H,XL,XR, vL)− δP (H,XL ∪ {vL},XR, vR)

≥ P (H,XL,XR)−
ℓ(H)
4

.

As there is n moves in the game by applying this step n
2 times for each pair of moves (recall that we consider

here that Maker starts), we have at the end of the game Ls(H) ≥ P (H,XL,XR) ≥ P (H, ∅, ∅)− n
2 ×

ℓ(H)
4 , as

required.

141

Suppose now that Breaker starts and considers this strategy for him (i.e. choosing the vertex v that
maximizes δP (H,XL,XR, v)). Suppose XL and XR have already been played by Maker and Breaker re-
spectively. Let vR be the vertex played by Breaker according to S and let vL be the vertex answered
by Maker. We have δP (H,XL,XR, vR) ≥ δP (H,XL,XR, vL). Note that here, δP (H,XL,XR ∪ {vR}, vL)
cannot increase after the move of Right, as it does not change the size of the hyperedges (it can only
decrease if some edges containing vL also contains vR). Therefore, after these two moves, we obtain
P (H,XL ∪ {vL},XR ∪ {vR}) ≤ P (H,XL,XR). By applying this result from XL = XR = ∅ to the end
of the game, we obtain P (H,XL,XR) ≤ P (H, ∅, ∅) for any sets XL and XR obtained after Right applies S.
In particular, when the game ends, this strategy ensures that Rs(H) ≤ P (H, ∅, ∅) =

∑
e∈H

2−|e|.

6.3 Maker-Maker Incidence is polynomial

From now on and until the end of the chapter, we will focus on the game Incidence, defined in Section 6.1.3.

In this section, we provide a linear time algorithm to compute the score of Maker-Maker Incidence. A
natural idea, while playing Incidence, is that high degree vertices are interesting to play first, as they enable
to score many points with their multiple adjacent edges. Therefore, a simple strategy for both players would
be to play greedily by always picking an available vertex of highest degree. We prove here that this strategy
is optimal.

Theorem 6.12. Let G be a graph with n vertices. Let d1 ≥ ... ≥ dn be the degree of the vertices in decreasing
order. For the game Maker-Maker Incidence played on G, we have

Ls(G) =
1

2

(∑
i odd

di −
∑

i even

di

)
.

In particular, the score can be computed in linear time.

Proof. Let G = (V,E) be a graph. Denote by v1, . . . , vn the vertices of G of degree d1, . . . , dn respectively,
and arranged such that d1 ≥ d2 ≥ · · · ≥ dn. Denote by s = 1

2 (
∑

i odd

di −
∑

i even

di). We will prove that

Ls(G) = s. Before proving the value of the score, we prove the following claim:

Claim 6.13. Denote by VL the vertices claimed by Left, and by VR the vertices claimed by Right at the end
of a game played on G. The score obtained is 1

2 (
∑

vl∈VL

dl −
∑

vr∈VR

dr).

Proof of the claim. Denote by eL (resp. eR) the number of edges where both endpoints were claimed by Left
(resp. Right) and by e0 the number of edges which have one extremity claimed by each player.

By definition, the score is eL − eR. Now, by a double counting argument, we have
∑

vl∈VL

dl = 2eL + e0,

and
∑

vr∈VR

dr = 2eR + e0. Therefore, the score of the game is eL − eR = 1
2 (
∑

vf∈VL

dl −
∑

vr∈VR

dr). ⋄

Now we provide a strategy for Left that proves that Ls(G) ≥ s. The same argument works for Right and
leads to Ls(G) ≤ s. Consider that Left claims at each turn the free vertex of highest degree. During her first
turn, she claims a vertex of degree d1, during the second turn, she claims either a vertex of degree d2 or d3,
both having a value of at least d3, . . . , during here k-th turn, she will claim a vertex of degree dk, dk+1, . . .
or d2k−1, each of them have a value of at least d2k−1. In the end, she will have played

⌈
n
2

⌉
vertices, and the

k-th of them will be of degree at least d2k−1. Reciprocally, the highest degree played by Right has value at
most d2, the second highest has value at most d4 and so on. Therefore, by using the result of the claim, the
score obtained by this strategy is at least s.

The above score can be computed in linear time because it does not require to sort the list of the vertices,
but only to know the number of vertices of any degree, which is bounded by n− 1.

142

Corollary 6.14. Let n ∈ N. Denote by Pn the path of order n. In Maker-Maker Incidence, we have
Ls(Pn) = −Rs(Pn) = 0 if n is even and Ls(Pn) = −Rs(Pn) = 1 if n is odd.

Proof. Pn has exactly n − 2 vertices of degree 2 and two vertices of degree 1. Therefore, if n is even, an
optimal strategy gives n

2 −1 vertices of degree two and one vertex of degree one to each player, which provides
a draw. If n is odd, Left has one more vertex of degree 2 to play, and her score is then 1.

Corollary 6.15. Let G be a graph of maximal degree ∆. In Maker-Maker Incidence, we have Ls(G) ≤ ∆
2 .

Proof. Let G be a graph of maximal degree ∆. Up to adding an isolated vertex, suppose it has an even
number of vertices. Denote by d1, d2, . . . , d2n its degrees written in decreasing order. We have Ls(G) =

1
2

n∑
i=1

(d2i−1 − d2i) = ∆
2 −

n∑
i=1

(d2i − d2i+1), by setting d2n+1 = 0. For any 1 ≤ i ≤ n, we have d2i ≥ d2i+1.

Hence, each term of the sum is nonnegative, and finally, we have Ls(G) ≤ ∆
2 .

6.4 General results on Maker-Breaker Incidence

In the rest of the chapter, we focus on the Maker-Breaker version of Incidence. Contrary to the Maker-
Maker version of this game, a greedy strategy is not always optimal. Thus, studying this game is much more
challenging. In this section, we give some general results on this version. We start with a direct application
of the bound given for general scoring positional games in Theorem 6.11.

Corollary 6.16. Let G be a graph with n vertices and m edges. In the Maker-Breaker Incidence game,
Ls(G) ≥ m

4 −
n
8 , and Rs(G) ≤

m
4 .

These bounds are tight for arbitrarily large values of n and m.

Proof. This is a direct application of Theorem 6.11. Since the hypergraph is 2-uniform and simple, for each
pair of vertices, there is at most one edge containing the two vertices. Thus we have ℓ(G) = 1. Furthermore,
each edge has size 2, thus

∑
e∈G

2−|e| = m
4 .

For tightness, consider first a graph G that is a complete graph of order 8k, with k ∈ N. The lower bound

gives Ls(G) ≥
(
8k
2

)
4
− k =

(
4k
2

)
. By playing randomly, Left takes 4k vertices and each pair of vertices scores

one point. Thus Ls(G) =
(
4k
2

)
Consider the graph H made by a disjoint union of 2k paths on three vertices. Left playing second can

take k central vertices and one leaf for each central vertex he has taken. This strategy gives at most k points
to Left which is equal to the upper bound m

4 given in the statement.
The graphs satisfying these tight bounds are depicted in Figure 6.3

The Super Lemma can also be applied in scoring positional games. Indeed, its proof does not use the fact
that the game ends after a hyperedge has been filled up. By consistency, even if the two proofs are similar,
its scoring version will still be proved here. We first introduce equivalent vertices.

Definition 6.17. let G = (V,E) be a graph, P = (G,VL, VR) some position of the game on G and VF =
V \ (VL ∪ VR) the set of free vertices. Let v1, v2 ∈ VF be two free vertices. v1, v2 are said to be equivalent in
P if and only if we have N(v1)∩ VF \ {v2} = N(v2)∩ VF \ {v1} and |N(v1)∩ VL| = |N(v2)∩ VL|. Note that
the first equality is a set equality, while the second one only is on cardinals. In practice, the first equality
states that both vertices are adjacent to the same unclaimed vertices, and thus create the same threats, while
the second one states that Left scores the same amount of points by playing v1 or v2. Equivalent vertices are
depicted in Figure 6.5.

Lemma 6.18 (Super Lemma, scoring version). Let G = (V,E) be a graph and let P = (G,VL, VR) be
a position of the game. Let v1, v2 be equivalent vertices in P . In Maker-Breaker Incidence, we have
Ls(P) = Ls(G,VL ∪ {v1}, VR ∪ {v2}) and Rs(P) = Rs(G,VL ∪ {v1}, VR ∪ {v2}).

143

R

R

L

R

L

R

L

L

(a) Graph satisfying Ls(G) = m
4
− n

8
= 28

4
− 8

8
= 6

R

L

L

R

R

L

L

L

R

R

R

L

(b) Graph satisfying Rs(G) = m
4
= 8

4
= 2

Figure 6.3: Example of tight bounds for Corollary 6.16. The position depicted is one obtained after optimal
moves from both players.

Proof. We prove both results by induction on |VF | = |V \ (VL ∪VR)|, the number of free vertices. The result
is clear if there are only two free vertices v1 and v2 as each player will claim one of them, and they will have
the same number of neighbors in VL at the end. Let P = (G,VL, VR) be a position with |VF | ≥ 3, and let
v1, v2 ∈ VF be equivalent vertices in P .

We first prove that Ls(P) = Ls(G,VL ∪ {v1}, VR ∪ {v2}). Let x be an optimal move for Left in P . If
x ∈ {v1, v2}, we have Ls(P) = Rs(G,VL∪{v1}, VR). Indeed, exchanging the roles of v1 and v2 is possible since
they will score exactly the same number of points at the end. Using the recursive definition of the scores we
have, Rs(G,VL∪{v1}, VR) ≤ Ls(G,VL∪{v1}, VR∪{v2}). Otherwise, we have Ls(P) = Rs(G,VL∪{x}, VR).
Vertices v1 and v2 are still equivalent in (G,VL ∪ {x}, VR). By induction, Rs(G,VL ∪ {x}, VR) = Rs(G,VL ∪
{v1, x}, VR∪{v2}). According to the recursive definition of the score, Ls(G,VL∪{v1}, VR∪{v2}) ≥ Rs(G,VL∪
{v1, x}, VR ∪ {v2}). Finally, in both cases, Ls(P) ≤ Ls(G,VL ∪ {v1}, VR ∪ {v2}).

We now prove the other inequality. Let x be an optimal move for Left in (G,VL∪{v1}, VR∪{v2}). We have
Ls(G,VL∪{v1}, VR∪{v2}) = Rs(G,VL∪{v1, x}, VR∪{v2}). By induction, since v1 and v2 are still equivalent
in (G,VL ∪ {x}, VR), we have Rs(G,VL ∪ {v1, x}, VR ∪ {v2}) = Rs(G,VL ∪ {x}, VR). Using the recursive
definition of the score, Ls(P) ≥ Rs(G,VL ∪ {x}, VR), which leads to Ls(P) ≥ Ls(G,VL ∪ {v1}, VR ∪ {v2}).
Finally, we have proved Ls(P) = Ls(G,VL ∪ {v1}, VR ∪ {v2}).

We now turn to the proof of Rs(P) = Rs(G,VL ∪ {v1}, VR ∪ {v2}). Let x be an optimal move for
Right in P . If x ∈ {v1, v2}, we have Rs(P) = Ls(G,VL, VR ∪ {v2}). Indeed, exchanging the roles of v1
and v2 is possible since they will score exactly the same number of points at the end. Using the recursive
definition of the scores, we have Ls(G,VL, VR ∪ {v2}) ≥ Rs(G,VL ∪ {v1}, VR ∪ {v2}). Otherwise, we have
Rs(P) = Ls(G,VL, VR ∪ {x}). Vertices v1 and v2 are still equivalent in (G,VL, VR ∪ {x}). By induction,
Ls(G,VL, VR ∪ {x}) = Ls(G,VL ∪ {v1}, VR ∪ {v2, x}). According to the recursive definition of the score,
Rs(G,VL ∪ {v1}, VR ∪ {v2}) ≤ Ls(G,VL ∪ {v1}, VR ∪ {v2, x}). Finally, in both cases, Rs(P) ≥ Rs(G,VL ∪
{v1}, VR ∪ {v2}).

We now prove the other inequality. Let x be an optimal move for Right in (G,VL ∪{v1}, VR ∪{v2}). We
have Rs(G,VL ∪ {v1}, VR ∪ {v2}) = Ls(G,VL ∪ {v1}, VR ∪ {v2, x}). By induction, since v1 and v2 are still
equivalent in (G,VL, VR ∪ {x}), we have Ls(G,VL ∪ {v1}, VR ∪ {v2, x}) = Ls(G,VL, VR ∪ {x}). Using the
recursive definition of the score, Rs(P) ≤ Ls(G,VL, VR∪{x}), which leads to Rs(P) ≤ Rs(G,VL∪{v1}, VR∪
{v2}).

Finally, we have proved Rs(P) = Rs(G,VL ∪ {v1}, VR ∪ {v2}).

Note that this result is only true for equivalent vertices. In general, a good move for Left is not necessarily

144

a good move for Right. For instance, in Figure 6.4, if Left starts by playing u, the score is 4, and if she
starts by playing any other vertex, the score is at most 3, thus her only optimal move is u. If Right starts
by playing v, the score is 2, but if he starts by playing any other vertex, the score is at least 3. Hence, his
only optimal move is v.

u v

Figure 6.4: A graph G for which Ls(G) = 4 with unique optimal move u and Rs(G) = 2 with unique optimal
move v.

The Super Lemma 6.18 is actually very useful to deal with similar vertices. We illustrate its power by
computing the score for complete binary trees. A complete binary tree of depth k is a rooted tree such that
each vertex at depth j < k has exactly two children (and by definition of the depth, each vertex at depth k
is a leaf).

Corollary 6.19. Let Tk be a complete binary tree of depth k ≥ 1. The scores in Maker-Breaker Incidence
are Ls(Tk) = 2k−1 and Rs(Tk) = 2k−1 − 1.

Proof. Let Tk be a complete binary tree of depth k. Its leaves are pairwise equivalent. By the Super
Lemma 6.18, we can assume that for any two leaves connected to a same vertex, one leaf can be given to
Right, and the second one to Left. Then, the parents of the leaves have only one unclaimed neighbor and
one neighbor claimed by Left. Therefore, any two parents of leaves with the same unclaimed neighbor are
equivalent. Thus, we can again apply the Super Lemma 6.18 and assign one vertex of each pair to each
player. By iterating this process from the leaves to the root, for any pair of vertices having the same parent,
Maker and Breaker both get one of them. The game is then equivalent to the game where only the root
is unclaimed, and thus the first player claims it. Finally, the number of edges taken by Maker satisfies
Ls(Tk) = Ls(Tk−1)+Rs(Tk−1)+1 (when Maker starts), and Rs(Tk) = Ls(Tk−1)+Rs(Tk−1) (when Breaker
starts). Since Ls(T0) = Rs(T0) = 0, we get the result by induction.

The application of Corollary 6.19 is depicted in Figure 6.5.

6.5 Complexity of Maker-Breaker Incidence

6.5.1 PSPACE-completeness of Incidence

Reductions in Maker-Breaker positional games are often made from POS CNF (as it was done in Chapter 3).
In our cases, we need to deal with scores and not only a structure. To handle this problem, we use a quantified
version of Max-2-SAT that we proved to be PSPACE-complete using 3-QBF.

Problem 6.20 (Quantified Max 2 SAT).
Input : an integer k and a Quantified CNF Formula φ of the form φ = ∃x1∀x2 . . . ∃x2n−1∀x2n

∧
1≤i≤m

Ci

where each Ci contains at most 2 literals.
Output : true if at least k clauses in φ are satisfied, false otherwise.

Theorem 6.21. Quantified Max 2 SAT is PSPACE-complete.

145

(a) Apply the Super Lemma to the
leaves

R

L

R

L

(b) We can now apply the Super
Lemma to their parents.

R

L

R

L

R

L

(c) The resulting graph after appli-
cation of the Super Lemma.

Figure 6.5: Application of the Super Lemma to compute the score in complete binary trees. Here Ls(T2) = 2
and Rs(T2) = 1

Proof. The proof of PSPACE-completeness of Quantified Max 2 SAT is similar to the proof of NP-completeness
of Max-2-SAT from Papadimitriou [Pap94].

First, Quantified Max 2 SAT is in PSPACE, as any valuation can be computed in polynomial space. There-
fore, by a min-max argument, it is possible to compute the number of satisfied clauses in polynomial space.

We provide a reduction from 3-QBF. Let ϕ = ∃x1, . . . ,∀xn ψ(x1, x2, ...xn) be a 3-QBF formula on m
clauses. For each clause ci = li1 ∨ li2 ∨ li3 of ψ, we introduce a new variable di and construct a set Ci of 10
clauses C1

i , . . . , C
10
i of size at most 2:

Ci = {(l1), (l2), (l3), (di), (¬l1 ∨ ¬l2), (¬l1 ∨ ¬l3), (¬l2 ∨ ¬l3), (¬d1 ∨ l1), (¬d1 ∨ l2), (¬d1 ∨ l3)}

Claim 6.22. Given any valuation of the literals li’s, if ci is satisfied, then there exists a valuation of di
such that exactly seven clauses in Ci are satisfied. Otherwise, at most six clauses of Ci are satisfied for any
valuation of di

Proof of the claim. The proof of the claim is a case analysis depending on the number of literals li that are
true in ci (since the literals play a symmetric role). The following table gives the number NC of clauses in
Ci that are satisfied depending on the number NL of literals li that are true and the valuation of di.

NL 0 0 1 1 2 2 3 3
di F T F T F T F T
NC 6 4 7 6 7 7 6 7

⋄

Let φ = ∃x1, . . . ,∀xn,∃d1, . . . ,∃dm,
m∧
i=1

10∧
j=1

Cj
i and let k = 7m. Note that dummy variables can be added

to preserve the alternation between ∃ and ∀ if needed.
If ϕ is true, then, for any valuation obtained by the Qi’s that makes ψ true, there exists a valuation for

each dj such that there are exactly seven clauses satisfied in each set Cj . Thus, by taking this valuation for
each dj , we have that k = 7m clauses satisfied in φ.

Reciprocally, if ϕ is false, then for any valuation provided by the Qis, there exists a clause Cj that is not
satisfied. Therefore, at most six clauses in Cj are satisfied. For the other clauses, at most seven of them are
satisfied. Thus, the total number of satisfied clauses in φ is at most 7m− 1 = k − 1.

Finally, the formula φ of Quantified Max 2 SAT has at least 7m clauses satisfied if and only if ϕ is True.
Up to adding a variable in all the clauses of size 1 and quantifying it with a ∀, we can suppose that all

the clauses of φ have size 2.

146

We now turn to the main proof of this section, that is the proof of the complexity of Maker-Breaker
Incidence.

Theorem 6.23. Determining whether Left can score at least k in Maker-Breaker Incidence is PSPACE-
complete.

The construction provided in the proof will require some tools to order the moves of both player. First
we introduce the scoring version of Lemma 1.78: Let P = (G,VL, VR) be a game position of Incidence. Let
u and v be free vertices. We say that v dominates u in P and write v ≥P u if in any position obtained from
P , it is always more interesting to play v than u. More formally, v ≥P u if for any V ′

L, V
′
R such that VL ⊂ V ′

L

and VR ⊂ V ′
R, V

′
L ∩ V ′

R = ∅ and u, v /∈ V ′
L ∪ V ′

R, we have Rs(G,V ′
L ∪ {u}, V ′

R) ≥ Rs(G,V ′
L ∪ {v}, V ′

R) and
Ls(G,V ′

L ∪ {u}, V ′
R) ≤ Ls(G,V ′

L ∪ {v}, V ′
R).

Lemma 6.24. Let G = (V,E) be a graph and P = (G,VL, VR) a position of Maker-Breaker Incidence. Let
u, v be two free vertices such that |N(v) ∩ VL| ≥ |N(u) ∩ VL|+ |N(u) \N(v) ∩ VF |. Then v ≥P u.

Proof. Let S be a strategy in (G,VL, VR) that plays u before v. We define a strategy S ′ that plays v before
u as follows:

• While S wants to claim a vertex w ̸= u, claim w.

• If S wants to claim u while v is unclaimed, claim v instead, and still consider that u is claimed in S.

• When S wants to claim v, if it is already claimed, claim u instead. If the opponent has claimed u,
consider that he has claimed v, and continue to follow S.

Following this strategy, according to the moves of the opponent, all the vertices claimed by S are claimed
by S ′, with only a difference on u and v if they are not claimed by the same player.

If S was a strategy for Left, by following S ′, each edge that does not contain u nor v that was claimed
by S is claimed by S ′, and reciprocally. Concerning the edges containing u or v, Left has scored at most
|N(u)∩ VL|+ |N(u)∩ VF | points on them with S and |N(v)∩ VL|+ |N(v)∩ VF | by following S ′. Therefore,
as |N(v)∩VL| ≥ |N(u)∩VL|+ |N(u)\N(v)∩VF |, Left has score at least the same number of edges following
S ′.

The same argument shows that Right will have more edges with a vertex claimed by him by playing v
instead of u.

Proof of Theorem 6.23. First, computing the score in Maker-Breaker Incidence is in PSPACE as the game
last at most |V | moves and the score is at most |E|. Thus, it can be computed in polynomial space, according
to Section 6.1 in [HD09].

We prove that determining whether left can score k in Maker-Breaker Incidence is PSPACE-complete
by a reduction from Quantified Max 2 SAT. In this proof, we consider a quantified formula as a two-player
game. We first assume that the formula has the form ∃x2n∀x2n−1∃x2n−2, . . .∀x1 ψ , i.e. that the quantifiers
∃,∀ are alternating and starting with a quantifier ∃. This can be done for any quantified formulas by adding
some variables with the desired quantifier that are put in no clause, and thus that does not change the
number of clauses that are satisfied. The first player, Satisfier, tries to satisfy the largest number of clauses
by choosing the values of the even variables x2k (i.e. that are quantified by an ∃-quantifier) while the second
player, Falsifier, tries to spoil the formula and turn the largest number of clauses to false by choosing the
values of the odd variables x2k−1 (i.e. that are quantified by a ∀-quantifier).

Denote ψ =
m∧
j=1

(lj1 ∨ l
j
2) for l

j
1, l

j
2 some literals. We build a graph G = (V,E) as follows (see Figure 6.6):

• For each variable xi, we create 6mi+ 3 vertices. These vertices induce three stars of center vi, vi and
ṽi, and with 2mi leaves each. We will denote by Vi the set {vi, vi, ṽi}.

147

v4variable x4

positive

v4

negative

ṽ4

v3variable x3 v3 ṽ3

v2variable x2 v2 ṽ2

v1variable x1 v1 ṽ1

Figure 6.6: Reduction of ∃x4∀x3∃x2∀x1(¬x2 ∨ x3) ∧ (x1 ∨ x3) ∧ (¬x3 ∨ ¬x4)

• We consider a function f defined by f(xi) = vi and f(¬xi) = vi. For each clause Cj = lj1 ∨ l
j
2, we add

an edge ej = (f(lj1), f(l
j
2)).

The number of vertices outside sets Vi (i.e. the number of leaves) is N =
∑2n

i=1 6mi = 6mn(2n+1). Thus
the total number of vertices in G is N + 6n and the total number of edges is N +m, which is polynomial in
the size of φ. An example of reduction is provided in Figure 6.6 with m = 3 and n = 2.

Consider a game of Maker-Breaker Incidence on G with Right starting. Using the Super Lemma 6.18,
for every 1 ≤ i ≤ 2n, the leaves connected to vertices vi, vi and ṽi respectively, are equivalent. Thus, half of
them can be given to Left and the other half to Right. Since there are an even number of leaves for each star,
the only free vertices after this operation are the 6n vertices in sets Vi for 1 ≤ i ≤ n. Let P 0 = (G,V 0

L , V
0
R)

be this position, and denote by V 0
F the set of free vertices in this position. By the Super Lemma 6.18, we

have Rs(G) = Rs(P0).
Now, if 1 ≤ j < i ≤ 2n, for any v∗i ∈ Vi and v∗j ∈ Vj , we have |N(v∗i) ∩ V 0

L | = mi, |N(v∗j) ∩ V 0
L | = mj

and |N(v∗j)∩V 0
F | ≤ m. Therefore, by Lemma 6.24 we have v∗i ≥P0

v∗j . Moreover, as N(ṽi)∩V 0
F = ∅, we also

have vi ≥P0 ṽi and vi ≥P0 ṽi.
Hence, in any optimal strategy in P0 with Right starting, the vertices are played in n rounds, from round

ℓ = n to ℓ = 1, with the following six steps in each round:

1. One vertex chosen by Right among {v2ℓ, v2ℓ}

148

2. The other vertex among {v2ℓ, v2ℓ} is taken by Left.

3. The vertex ṽ2ℓ is taken by Right.

4. One vertex among {v2ℓ−1, v2ℓ−1} is taken by Left.

5. The second vertex in {v2ℓ−1, v2ℓ−1} is taken by Right.

6. The vertex ṽ2ℓ−1 is taken by Left.

This way, Left will obtain exactly N ′ =
∑n

ℓ=1(2ℓm+2(2ℓ− 1)m) = 3mn(n+1)− 2mn edges in the stars
and maybe some other edges in the clause edges. Let k′ = N ′ +m− k + 1.

We will prove that Rs(G) ≥ k′ in Maker-Breaker Incidence if and only if Falsifier wins on (φ, k) in
Quantified Max 2 SAT.

Claim 6.25. If Satisfier has a strategy to satisfy k clauses in φ, then Rs(G) < k′.

Proof of the claim. We suppose that Satisfier has a winning strategy S in (φ, k). We consider that both
Right and Left play optimally in G and thus we can assume that the game is played in P0 and respects the
previous order.

Consider the following strategy for Right. At each round ℓ from ℓ = n to ℓ = 1, Right takes a decision
only at Step 1. If Satisfier would turn x2i to True in the game played on φ, then Right plays v2i, otherwise,
he plays v2i. Then, Steps 2 and 3 are determined. At Step 4, if Left plays v2i−1 then Right considers that
Falsifier has turned x2i−1 to False, otherwise he considers she has turned it to True. Then again, Steps 5
and 6 are determined. By following this strategy, the underlying value obtained for φ is exactly the value
that Satisfier would obtain by playing according to S. Thus, at least k clauses are satisfied in φ.

Note that for a literal lj , the vertex f(lj) is taken by Right if and only if lj is True in the game of
Quantified Max 2 SAT. Let Cj = lj1 ∨ l

j
2 be a clause. If Left has claimed the two extremities of ej , it means

that Left has played f(lj1) and f(l
j
2). Therefore, the underlying values of lj1 and of lj2 are both False, and Cj

is not satisfied in ψ. Hence, Left claims at most m− k edges ej . Finally, Left claimed at most k′ − 1 edges
and we have Rs(G) < k′. ⋄

Claim 6.26. If Falsifier has a strategy such that at most k − 1 clauses are satisfied in ϕ, then Rs(G) ≥ k′.

Proof of the claim. We now suppose that Falsifier has a winning strategy S in (φ, k). We consider that both
Right and Left play optimally in G and thus we can assume that the game is played in P0 and respects the
previous order. Consider the following strategy for Left. At each round ℓ from ℓ = n to ℓ = 1, Left takes
a decision only at Step 4. At Step 1, if Right plays v2ℓ then Left considers that Satisfier has turned x2ℓ to
True, otherwise she considers he has turned it to False. Then, Steps 2 and 3 are determined. At Step 4,
if Falsifier would turn x2i−1 to False in the game played on φ, then Left plays v2i−1, otherwise, she plays
v2i−1. Then again, Steps 5 and 6 are determined.

By following this strategy, the underlying value obtained for φ is exactly the value that Falsifier would
obtain by playing according to S. Thus, it would satisfy at most k − 1 clauses in φ. As before, if a clause
lj1 ∨ l

j
2 is not satisfied in φ it means that both vertices f(lj1) and f(lj2) are taken by Left and thus Left got

the edge. Thus, Left claims at least N ′ +m− k + 1 edges in the game G and Rs(G) ≥ k′. ⋄

Remark 6.27. Note that up to adding a useless variable in φ, φ could start by a ∀-quantifier, implying that
computing whether Left can score at least k in Maker-Breaker Incidence is PSPACE-complete even if Left
starts.

Corollary 6.28. Computing whether Left can score at least k more than Right in Maker-Maker Scoring
Positional Game is PSPACE-complete, even restricted to 3-uniform hypergraphs.

149

Proof. The proof is similar to the proof of Corollary 1.65. From a graph G = (V,E) of Maker-Breaker
Incidence, we consider the instance of 3-uniform Maker-Maker Scoring Positional Game obtained by adding
a universal vertex v0. Consider the hypergraph H = (V ∪ {v0}, {e ∪ {v0}|e ∈ E}). When Left starts, any
optimal strategy starts by playing v0, otherwise Right plays it and the score will be at most 0. Then we
are left to a Maker-Breaker position as Right cannot score any point, but starts. Finally the Left score
of H in Maker-Maker convention is equal to the Right score of G in Maker-Breaker convention, which is
PSPACE-complete to compute.

6.5.2 Complexity parameterized by the neighborhood diversity

As the game is PSPACE-hard, considering its parameterized complexity is a way to obtain positive results.
The Super Lemma 6.18 enables us to know how equivalent vertices will be claimed. A particular case of
equivalent vertices are vertices of the same type. We recall that two vertices u and v have the same type if
N(v) \ {u} = N(u) \ {v}. This leads to an FPT algorithm for the neighborhood diversity.

Theorem 6.29. Maker-Breaker Incidence parameterized by the neighborhood diversity w has a cubic kernel.

The proof is divided into four steps. We first give the main idea behind each one:

1. We divide the graph into w sets of vertices of the same type, and we use the Super Lemma 6.18 to
leave at most one vertex unplayed in each set.

2. As we are in the Maker-Breaker convention, we remove the vertices played by Right, as it is done in
positional games (Lemma 1.74). We cannot remove Left’s vertices because they may contribute to
edges later, but we can remove edges claimed by Left by updating the score.

3. If some vertices have many neighbors already claimed by Left, they dominate the others, and we know
that they will be played first. So, we remove some of their neighbors and update the score.

4. We replace the vertices claimed by Left with a fewest number that preserves the number of adjacent
vertices already played for each unclaimed vertex.

Proof. In this proof, we will consider as instances of Maker-Breaker Incidence pairs (P, k) where P is a
position of Maker-Breaker Incidence played on G (i.e. some vertices are already played) and k is the aimed
score of Left. Note that this does not change the complexity of the problem. Indeed, from any position
P = (G,VL, VR) one can obtain a graph G′ with no vertices played for which the games are equivalent. First
remove all the vertices in VR of the graph. Then, duplicate each vertex in VL by creating a twin vertex having
the same neighborhood and free the vertices in VL. By Lemma 6.18, one can assume that both players will
take one vertex in each pair of twins.

Let G = (V,E) be a graph of neighborhood diversity w. Consider a partition (V1, . . . , Vw) of V such that
the vertices in each part are all of the same type. We provide the following kernelization algorithm. Let
I = ((G, ∅, ∅), k) be an instance of Maker-Breaker Incidence. An example of the different steps is provided
in Figure 6.7.

Step 1: While there exists a part Vi, 1 ≤ i ≤ w such that there are at least two free vertices u, v ∈ Vi,
add u to VL and v to VR. By Lemma 6.18, this transformation does not change the outcome of the game. At
the end of Step 1, there are at most w free vertices in G. In Figure 6.7b, it consists in distributing vertices
of same type between Left and Right.

Step 2: Remove all the edges included in VL and set k ← k − |e ⊂ VL|. Then remove from G all the
vertices in VR that cannot count for any point. This transformation do not change the outcome of I. At
this moment, G only contains free vertices or vertices claimed by Left, and any edge has at least one free
extremity. In Figure 6.7c, it consists in removing the 16 edges on which the two endpoints are claimed by
Left, and to remove the red vertices and their incident edges. Therefore, k is decreased from 30 to 14.

Step 3: Let r the number of free vertices in P , we have r ≤ w. Let v1, . . . , vr be these vertices. For
1 ≤ i ≤ r, let pi = |N(vi) ∩ VL| and order the vertices such that p1 ≥ p2 ≥ · · · ≥ pr. While there exists

150

an integer i such that pi > pi+1 + r (with pr+1 = 0), by Lemma 6.24, there exists an optimal strategy in
which the vertices v1, . . . , vi are played before the vertices vi+1, . . . , vr. On these vertices, Left will score at
least pi at each Left move. Therefore, we can do the following transformation. Let s = pi − pi+1 − r for any
1 ≤ j ≤ i, set pj ← pj − s and set k ← k− s

⌈
i
2

⌉
. Repeat Step 3 until we have pi ≤ pi+1+ r for all 1 ≤ i ≤ r.

In particular, we have after these operations p1 ≤ r2. In Figure 6.7d, it happens only once, as p1 = 8, p2 = 3
and w′ = 4. Therefore, we set p1 = 7 and k is decreased from 14 to 13.

Step 4: Let U = {u1, . . . , up1} be p1 new vertices and transform (G,VL, ∅) into ((G \VL)∪U,U, ∅), and,
for 1 ≤ i ≤ r, connect the vertex vi to any pi vertices in U . This transformation do not change the outcome
of the game, since only the number of neighbors in VL matters when a vertex is played. In Figure 6.7e, we
have p1 = 7. Thus, U contains seven vertices and each remaining uncolored vertex vi is connected to pi of
these seven vertices.

Finally, if k ≥ r3, as there are at most r3 edges in the final graph, we can just transform P into a trivial
False instance like the empty graph with k = 1. Thus, we can assume that k ≤ r3.

The instance obtained has p1+r ≤ r2+r ≤ w2+w vertices, at most r ∗p1 ≤ r3 ≤ w3 edges, k ≤ r3 ≤ w3

and the same outcome as the input. Finally, this new instance has cubic size in w and thus Maker-Breaker
Incidence has a cubic kernel.

Corollary 6.30. Let G be a graph of order n and neighborhood diversity w. In Maker-Breaker Incidence
Ls(G) and Rs(G) can be computed in time O(w2w! + n2)

Proof. We can compute the kernel in time n2, and then try all the possible games by testing all the moves
in time w2w!.

Note that the cubic size of the kernel is mostly due to the w2 vertices that are already claimed by Left.
As these vertices cannot be played any longer, by giving weight to the vertices, it is possible to have a
quasilinear kernel by storing only the number of neighbors of each vertex that are already claimed by Left
instead of vertices themselves.

6.6 Paths and cycles

We here give the exact values of the score for Maker-Breaker Incidence played on paths and cycles. For
that purpose, we will consider the equivalence properties of Milnor’s universe detailed in Section 2. In
particular, the notion of negative will be required, implying to consider the partisan version of Incidence.
More precisely, in this section, instances of Maker-Breaker Incidence will correspond to paths or cycles
where the edges are either colored all blue (i.e. only Left can get points) or all red (i.e. only Right can get
points). The notations are defined as follows:

• PL
n : path of order n where all the edges are colored blue. We denote the vertices of PL

n by {v0, . . . , vn−1}

• PR
n : path of order n where all the edges are colored red. We denote the vertices of PR

n by {v′0, . . . , v′n−1}
By definition, we have that PL

n = −PR
n .

6.6.1 Equivalences of paths

We first give the main result about the equivalence between paths modulo 5. We recall that, for k ∈ Z,
we define by k the game with no option and where Left has a score of k points. Thus, in Maker-Breaker
Incidence, the game 1 is equivalent to PL

2 in which Left has claimed the two vertices and −1 is equivalent
to PR

2 in which Right has claimed the two vertices. The main theorem of this section states that paths of
order at least 6 are equivalent to paths having five vertices less, with a difference of one in the score. This
result remains true if an extremity of the path is already colored.

Theorem 6.31. Let n ≥ 1 be an integer. We have PL
n+5 ≡ PL

n + 1 and PR
n+5 ≡ PR

n − 1.
Let n ≥ 2 be an integer. We have (PL

n+5, {v0}, ∅) ≡ (PL
n , {v0}, ∅)+ 1 and (PR

n+5, ∅, {v′0}) ≡ (PR
n , ∅, {v′0})− 1.

The rest of this subsection will be dedicated to the proof of this theorem.

151

(a) A graph to kernelize. Set k = 30.
(b) Step 1, k = 30. Pairwise equivalent vertices are
distributed between Left and Right.

p1 = 8 p2 = 3

p4 = 2 p3 = 3

(c) Step 2, 16 edges removed, k = 30 − 16 = 14. The
Vertices claimed by Right are removed.

p1 = 7 p2 = 3

p4 = 2 p3 = 3

(d) Step 3, the unclaimed vertex in p1 dominates the
other. p1 has decreased by 1. k = 13.

(e) Step 4, each vertex vi has pi blue neighbors.

Figure 6.7: Example of a kernelization. Vertices in the same circle have same type. An edge between two
circles means that all the edges between the vertices of the two circles are in the graph. Blue and red vertices
are given to Left and Right respectively. We start with n = 22 and after Step 1 r = 4.

152

Strategy for Left when Right starts

Lemma 6.32. Let n ≥ 1 be an integer. In Maker-Breaker Incidence, we have Rs(PL
n+5 + PR

n) ≥ 1.
Let n ≥ 2 be an integer. In Maker-Breaker Incidence, we have Rs(PL

n+5 + PR
n , {v0}, {v′0}) ≥ 1.

This proof will be done by induction. Therefore, to handle the small cases, the scores of first paths will
be required. They are recorded in Figure 6.8 and Figure 6.9 and can be easily checked by hand.

n 1 2 3 4 5 6 7 8 9 10
Ls(PL

n) 0 0 1 1 1 1 1 2 2 2
Rs(PL

n) 0 0 0 0 0 1 1 1 1 1

Figure 6.8: First scores in short paths

n 1 2 3 4 5 6 7 8 9 10 11
Ls((PL

n , {v0}, ∅)) 0 1 1 1 1 2 2 2 2 2 3
Rs((PL

n , {v0}, ∅)) 0 0 0 0 1 1 1 1 1 2 2

Figure 6.9: First scores in short paths with an extremity claimed by Left

Proof. In order to prove that Rs(PL
n+5 + PR

n) ≥ 1 (resp. Rs(PL
n+5 + PR

n , {v0}, {v′0}) ≥ 1), we provide
a strategy for Left by induction. An example of move is provided in Figure 6.10 If 1 ≤ n ≤ 5 (resp.
2 ≤ n ≤ 6), a computation can verify that the result is true.

If n ≥ 6 (resp. n ≥ 7), we consider the first move of Right:

• If Right plays a vertex v′i for 0 ≤ i ≤ n−1 (resp. 1 ≤ i ≤ n−1), Left answers by playing the vertex vi.
The resulting position is (PL

n+5 +PR
n , {vi}, {v′i}) (resp. (PL

n+5 +PR
n , {v0, vi}, {v′0, v′i})), which is equiv-

alent to (PL
i+1 +PR

i+1, {vi}, {v′i}) + (PL
n+5−i +PR

n−i, {v0}, {v′0}) (resp. (PL
i+1 +PR

i+1, {v0, vi}, {v′0, v′i}) +
(PL

n+5−i+P
R
n−i, {v0}, {v′0})). As we have (PL

i+1+P
R
i+1, {vi}, {v′i}) ≡ 0 (resp. (PL

i+1+P
R
i+1, {v0, vi}, {v′0, v′i}) ≡

0) and (PL
n+5−i+P

R
n−i, {v0}, {v′0}) satisfies the induction hypothesis, and therefore the score is at least

one.

• If Right plays a vertex vi for 0 ≤ i ≤ n − 1 (resp. 1 ≤ i ≤ n − 1), Left answers by playing the vertex
v′i. The resulting position is (PL

n+5 + PR
n , {v′i}, {vi}) (resp. (PL

n+5 + PR
n , {v0, v′i}, {v′0, vi})), which is

equivalent to (PL
i + PR

i) + (PL
n+5−(i+1) + PR

n−(i+1)) (resp. (PL
i + PR

i , {v0}, {v′0}) + (PL
n+5−(i+1) +

PR
n−(i+1))). As we have (PL

i +PR
i) ≡ 0 (resp. (PL

i +PR
i , {v0}, {v′0}) ≡ 0) and (PL

n+5−(i+1) +PR
n−(i+1))

satisfies the induction hypothesis, the score is at least one

• If Right plays a vertex vi for n ≤ i ≤ n+ 4. Left answers by playing v′i−5, which exists as n ≥ 6 (resp.
n ≥ 7). The resulting position is (PL

n+5 + PR
n , {v′i−5}, {vi}) (resp. (PL

n+5 + PR
n , {v0, v′i−5}, {v′0, vi})),

which is equivalent to (PL
i + PR

i−5) + (PL
n−1−i + PR

n−1−i) (resp. (PL
i + PR

i−5, {v0}, {v′0}) + (PL
n−1−i +

PR
n−1−i)). Here, we have (PL

n−1−i + PR
n−1−i) ≡ 0 and (PL

i + PR
i−5) (resp. (PL

i + PR
i−5, {v0}, {v′0}))

satisfies the induction hypothesis as n+ 4 ≥ i ≥ n ≥ 6 (resp. i ≥ n ≥ 7) and therefore the score is at
least one.

This strategy ensures that Rs(PL
n+5 + PR

n) ≥ 1 (resp. Rs(PL
n+5 + PR

n , {v0}, {v′0}) ≥ 1).

Strategy for Right when Left starts

When Left starts, the induction made in the previous proof cannot be applied. Indeed, from the position
(PL

n+5 + PR
n , {v0}, {v′0}), Left can in one move make the position be (PL

n+5 + PR
n , {v0, vn+3}, {v′0}) and no

move of right can transform it into a position handled by the induction hypothesis. Therefore, another

153

≡ 1 by induction ≡ 0

R

L

Figure 6.10: Example of answer for Left. Only Left can score on the path at the top. Only Right can score
on the path at the bottom. Here, Right played vn+2, and Left answered v′n−3

strategy is required. We will consider a strategy for Right that consists, for the leftmost vertices of both
paths, in mimicking any move of Left on the other path, and that ensures some minimal properties on the
moves played on the rightmost vertices. We introduce the following lemma to handle the rightmost vertices.

Lemma 6.33. Consider the graph G = PL
6 + {v′0}. Let v0 be an extremity of PL

6 . In Maker-Breaker
Incidence, Right has a strategy, going second, such that Left claims either v0 and v′0 without any point, or
at most one of {v0, v′0} and she scores at most one point on G.

Proof. Let G = PL
6 + {v′0}. This graph represents the seven vertices on the left of the dashed line in

Figure 6.11. Recall that v0, . . . , v5 are the vertices of PL
6 . We will describe a strategy for Right playing

second such that Left scores no point or such that she does not claim both v0 and v′0 with at most one point.

• If Left plays v0, Right answers v1,

– if Left plays v′0, Right plays v3 and pairs v4 and v5. Left cannot score a point.

– If Left plays v2 (resp. v5), Right plays v3 (resp. v4) and pairs (v4, v5) (resp. (v2, v3)). This way,
Left cannot score a point.

– If Left plays in v3 (resp. v4), Right plays v4 (resp. v3) and pairs v2 (resp. v5) with v′0. Either
Left scores a point or claims both v0 and v′0.

• If Left plays v1, Right answers v0. He has claimed one of (v0, v
′
0). He then pairs (v2, v3) and (v4, v5).

With this pairing, Left can score at most one point.

• If Left plays v2, Right answers v3. He then pairs (v0, v1 and v4, v5). The only one edge outside the
pairing (and therefore that can be claimed by Left) is v1, v2 but with this pairing, Right then plays v0
and claim one of v0, v

′
0. Otherwise, Left scores no point.

• If Left plays v3 (resp. v5), Right answers v4, he then pairs (v0, v
′
0) and (v1, v2). This way, Left scores

at most one point on the edge (v2, v3) or (v0, v1) but she cannot take both. And Right will be able to
take one of v0 or v′0.

• If Left plays v4, Right answers v3

– If Left plays v0, Right plays v1 and pairs v′0 with v5. Either Left claims v′0, and then by claiming
v5, Right ensures that Left scores no point, or Left claims v5 and scores one point, but Right
claims v′0 ∈ {v0, v′0}.

– If Left plays v1 (resp. v2), Right plays v0 and pairs v2 (resp. v1) and v5. By claiming one of
them, Left scores one point but Right claims the second one, and therefore, Right ensures that
Left scores only one point and does not claim both v0 and v′0.

154

– If Left plays v5 (resp. v′0), Right plays v0 and pairs (v1, v2). Then, Left cannot score a second
point (resp. can score at most one point by playing v5), and Right has already claimed one of
v0, v

′
0.

• If Left plays v′0, Right answers v0. He has already claimed one of v0, v
′
0, and the remaining graph is

equivalent to PL
5 for which we already know that Left gets at most 1 when she starts.

Lemma 6.34. Let n ≥ 1 be an integer. In Maker-Breaker Incidence, we have Ls(PL
n+5 + PR

n) ≤ 1.
Let n ≥ 2 be an integer. In Maker-Breaker Incidence, we have Ls(PL

n+5 + PR
n , {v0}, {v′0}) ≤ 1.

Proof. The proof below holds for the two cases, i.e. if the vertices v0 and v′0 are already colored or not.
Recall that v0, . . . , vn+4 are the vertices of PL

n+5 and v′0, . . . , v
′
n−1 are the vertices of PR

n . We provide here
a strategy for Right to ensure that the score is at most 1 as follows:

• If Left plays a vertex in a pair (vi, v
′
i) with 0 ≤ i ≤ n− 2, Right answers the second vertex of this pair.

• If Left plays another vertex, Right follows the strategy of Lemma 6.33 with PL
6 = {v0 = vn−1, . . . , vn+4}

and v′0 = v′n−1.

This strategy is depicted in Figure 6.11
According to this strategy, Right ensures that Left scores the same number of points as him on the

subgraph induced by the vertices vi, v
′
i with 0 ≤ i ≤ n − 2. On the rest of the graph, from Lemma 6.33,

either Left takes the two vertices v0, v
′
0 and gets no point, which can yield her overall at most one point with

the edge (vn−2, vn−1) of P
L
n+5. Otherwise, she takes v′0 or the extremity v0 of the PL

6 and scores one point. In
this case, if this extremity corresponds to v′n−1 of PR

n she does not score a second point, and if this extremity
is vn−1, she can score a point if she also takes vn−2. But in this case, Right has claimed both v′n−2 by the
pairing strategy and v′n−1 as he has also claimed the other extremity. Thus, Right also scores one point.
Finally, Right ensures that the score is at most 1 with this strategy, and we have Ls(PL

n+5 + PR
n) ≤ 1.

Figure 6.11: Only left can score on the path at the top, and only Right can score on the path at the bottom.
We present a strategy for Right to ensure that the score is at most one. On the left of the dashed line, the
pairing is depicted ensuring a zero score. On the right, Lemma 6.33 ensures that Right either claims the
two extremities connected to the left part, or scores one with at most one of the two extremities, ensuring a
score at most one.

Proof of Theorem 6.31 and score on paths

Now we can prove Theorem 6.31.

155

Proof. By symmetry, as PL
n = −PR

n for any n, we only need to prove the result for PL
n .

As our game is in Milnor’s universe, according to Lemma 6.2, it is sufficient to prove that PL
n+5 −

PL
n − 1 ≡ 0 (resp. (PL

n+5 − PL
n , {v0}, {v′0}) − 1 ≡ 0), i.e. Ls(PL

n+5 + PR
n) = Rs(PL

n+5 + PR
n) = 1 (resp.

Ls(PL
n+5 + PR

n , {v0}, {v′0}) = Rs(PL
n+5 + PR

n , {v0}, {v′0}) = 1).
As the game is nonzugzwang, and according to Lemma 6.32 and Lemma 6.34, we have proven 1 ≥

Ls(PL
n+5+P

R
n) ≥ Rs(PL

n+5+P
R
n) ≥ 1 (resp. 1 ≥ Ls(PL

n+5+P
R
n , {v0}, {v′0}) ≥ Rs(PL

n+5+P
R
n , {v0}, {v′0}) ≥ 1),

which corresponds to the desired result.

From Theorem 6.31, and since the score on small paths is provided by Figure 6.8, the score of any path
can be computed as follows:

Corollary 6.35. Let n ≥ 1 be an integer. Denote by n = 5q + r with q and r the quotient and the rest of n
divided by 5. In Maker-Breaker Incidence, on the one hand, we have Ls(PL

n) = −Rs(PR
n) = q if 0 ≤ r ≤ 2,

and Ls(PL
n) = −Rs(PR

n) = q + 1 if 3 ≤ r ≤ 4. On the other hand, we have Rs(PL
n) = −Ls(PR

n) = q − 1 if
r = 0, Rs(PL

n) = −Ls(PR
n) = q if 1 ≤ r ≤ 4.

6.6.2 Union of paths and cycles

We will denote cycles as follows:

• CL
n : cycle of length n where all the edges are colored blue.

• CR
n : cycle of length n where all the edges are colored red.

Now that the equivalences of paths are known, union of paths can easily be reduced to union of paths
of order at most 5. Yet, to deal with unions of paths, it is not sufficient in general to compute the score on
each of them, since the score on a union is not in general the sum of the scores. The problem can be solved
by considering new equivalences between small paths.

Lemma 6.36. In Maker-Breaker Incidence, we have the following equivalences:

PL
1 ≡ PL

2 ≡ 0 (6.1)

2PL
3 ≡ 1 (6.2)

PL
4 ≡ PL

3 (6.3)

2PL
5 + PL

3 ≡ 2 (6.4)

Proof. Recall that given a graph G and an integer k, in order to prove that G ≡ k, it is sufficient to prove
k ≥ Ls(G) and Rs(G) ≥ k.

1. We have Ls(PL
1) = Rs(PL

1) = 0 and Ls(PL
2) = Rs(PL

2) = 0 as in both games no edges are taken by a
player. This proves, by Lemma 6.2, that PL

1 = PL
2 = 0

2. We prove Ls(2PL
3) = Rs(2PL

3) = 1. To do that, we first apply the Super Lemma 6.18 on the two
extremities of each path. Only their middle vertices are now unclaimed, thus Left will claim one and
Right the other one, proving Ls(2PL

3) = Rs(2PL
3) = 1.

3. As −PL
3 = PR

3 , we will prove PL
4 + PR

3 = 0. Denote by (v0, v1, v2, v3) the vertices of PL
4 and by

(v′0, v
′
1, v

′
2) the vertices of PR

3

• Suppose Left starts. If she plays in PR
3 , Right plays v1 and pairs (v2, v3) to ensure that Left

cannot score an edge. If Left plays v0 or v1 (resp. v2 or v3), Right plays v2(resp. v1) and pairs
(v′0, v

′
2) and v

′
1 with the available vertex in {v0, v1} (resp. in {v2, v3}). This way, Left and Right

scores the same number of edges and this proves Ls(PR
3 + PL

4) ≤ 0

• Suppose Right starts. Left considers the pairing (v0, v
′
0), (v1, v

′
1), (v2, v

′
2). This way, any point

scored by Right is scored by Left. Therefore Rs(PL
4 + PR

3) ≥ 0.

156

4. Let G = 2PL
5 + PL

3 . Denote by v0, . . . , v4 and v′0, . . . , v
′
4 the vertices of the two copies of PL

5 and by
(u0, u1, u2) the vertices of PL

3 . Let first prove Rs(G) ≥ 2. Up to consider only 3 vertices of one copy
of PL

5 , we can suppose that the first move of Right is in a PL
5 and we will prove that Left scores 2 on

PL
5 +PL

3 . Suppose Right has played a vertex v′i with 0 ≤ i ≤ 4. Left plays v2 and continues as follows:

• If Right plays v0 or v1 (resp. v3 or v4), Left plays v3 (resp. v1) and pairs (v4, u1) (resp. (v0, u1))
and (u0, u2).

• If Right plays u0, u1 or u2, Left plays v1 and pairs (v0, v3).

In both cases, Left scores at least two points. Now we prove Ls(G) ≤ 2. After the first move of Left,
at least one of the two copies of PL

5 has its 5 vertices available. Suppose it is v′0, . . . , v
′
4. Right plays

v′2 and pairs (v′0, v
′
1) and (v′3, v

′
4), ensuring Left won’t score any point on this copy of PL

5 . Left plays a
second move:

• If v2 has not been played yet, Right plays v2. Left plays a third move. If the three moves of Left
are in PL

3 , Right pairs (v0, v1) and (v3, v4), ensuring Left does not score any other point. If at
least one of them is not in P3, Right plays any vertex of P3, and know that at least one vertex
of (v0, v1, v3, v4, u0, u1, u2) will be available for his next move. Thus, Left cannot score more than
two points on the rest of them.

• If Left has played v2, at least one of v1 or v3 is available. Right plays it. By symmetry, suppose
it is v1. After the next move of Left, at least one of v3, v4, u1 will be available. Right plays it,
ensuring again that Left cannot score more than 2.

We can now state the equivalence theorem for union of paths.

Corollary 6.37. Let P1, . . . , PN be paths of lengths n1, . . . , nN .
Let q1, . . . , qN be positive integers and 1 ≤ r1, . . . , rN ≤ 5 be integers such that for any 1 ≤ i ≤ N , we

have ni = 5qi + ri.
Denote for 1 ≤ i ≤ 5 by Ni the number of rj equal to i. In Maker-Breaker Incidence, we have:

N∑
i=1

PL
5qi+ri ≡

N∑
i=1

qi +

⌊
N3 +N4

2

⌋
+ 3

⌊
N5

4

⌋
+ (N3 +N4 mod 2)P3 + (N5 mod 4)P5

Therefore, Ls(
N∑
i=1

Pi) and Rs(
N∑
i=1

Pi) are computable in linear time.

Proof. By Theorem 6.31, any path PL
5qi+ri is equivalent to qi+Pri . Then, by Lemma 6.36, we have P3 ≡ P4,

2P3 ≡ 1, and 2(2P5 + P3) ≡ 4P5 + 2P3 ≡ 4P5 + 1 ≡ 4. Thus 4P5 ≡ 3. Note that these computations are
possible thanks to Milnor’s universe.

Note that we consider 1 ≤ ri ≤ 5 and not 0 ≤ ri ≤ 4, so qi and ri are not exactly the quotient and the
rest of the size of the path by 5.

Corollary 6.38. Let n ≥ 1. In Maker-Breaker Incidence, there exists a linear time algorithm to compute
Ls(CL

n) and Rs(C
L
n).

Proof. First, note that Rs(CL
n) = Ls(PL

n−1).
To compute Ls(CL

n), note that all the vertices are symmetric. Therefore, we can suppose that Left first
plays any of them. The next move of Right will make the graph equivalent to (PL

k , {v0}, ∅) + (PL
k′ , {v′0}, ∅)

with v0, v
′
0 extremities of PL

k and PL
k′ and with k + k′ = n. The score on these graphs can be computed in

linear time by using Corollary 6.37, and therefore, Ls(CL
n) too as, by Theorem 6.31, at most 5 values are to

be considered for the pair (k, k′) according to the equivalences.

157

6.7 Further work

In this chapter, we introduced scoring positional games as a general framework and then focused on Incidence,
which corresponds to the case of 2-uniform hypergraphs. As we just opened a new area of studies, several
questions are relevant. We have solved Maker-Breaker Incidence on union of paths using game equivalences,
as a generalization of this result, one can look for a polynomial algorithm on trees and forests.

Focusing on scoring positional games in general, and not just Incidence, we have proved that computing
the score in Maker-Maker Scoring Positional Game is PSPACE-complete even for 3-uniform hypergraphs
but provided a linear algorithm for 2-uniform hypergraphs. It might be interesting to look at particular 3-
uniform hypergraphs. For example, is it possible to compute the score in the scoring version of the Triangle
game (where players choose edges of a graph and try to construct triangles)? The hypergraph of this game
has the particularity to be linear. A more general question would be to find the complexity of computing
the score in Maker-Maker Incidence on linear 3-uniform hypergraphs.

In terms of parameterized complexity, we proved that computing the score in Maker-Breaker Incidence is
fixed-parameter tractable using the neighborhood diversity. It would be interesting to find other parameters
for which the problem is FPT. For example, we expect some FPT algorithm parameterized by the modular-
width with similar arguments to the one used in Chapter 4. Moreover, the most natural parameter in
positional games is the number of moves, and the most natural parameter in scoring game is the score. The
study of these two parameters on scoring positional games would make sense and seems to be the next step
of the parameterized study of Incidence.

158

Conclusion

The end.

In this thesis, I have presented several results on the complexity of positional games, both on general
positional games, and on specific ones. I summarize here the main open problems that could be the next
step of the studies.

As far as I am concerned, the study of the conventions of positional games, other than Maker-Breaker, is
probably the one that deserves more attention. We recall in Table 6.1 the different results obtained about the
complexity of the different conventions, but the complexities of some conventions are still unknown. Among
the classes for which no results are known yet, I think that the most affordable are 3-uniform Waiter-Client
and Client-Waiter, which should be solvable in polynomial time.

We also recall that most of the community conjectures that 4- and 5-uniform Maker-Breaker games to be
PSPACE-complete (see Conjecture 1.67). This conjecture can be extended to Avoider-Enforcer and Client-
Waiter as the reduction provided for Theorem 2.1 and Theorem 2.10 uses only one gadget hyperedge of rank
6, the others being of rank 4.

On the positive side, on particular games, as in Chapter 5, we proved that the Domination game is
polynomial in trees even in the Maker-Maker convention, it would be natural to consider this problem under
the conventions Avoider-Enforcer or Waiter-Client. To the best of my knowledge, the only results known
about them are in Gledel’s thesis [Gle19].

Rank 2 3 4, 5 6 7+

Maker-Breaker P
[Folklore]

P
[Gal23]

Open PSPACE-c
[RW21]

PSPACE-c
[RW21]

Maker-Maker P
[Folklore]

Open Open Open PSPACE-c
[RW21, Bys04]

Avoider-Avoider PSPACE-c
[BH19]

PSPACE-c
[BH19]

PSPACE-c
[BH19]

PSPACE-c
[BH19]

PSPACE-c
[BH19]

Avoider-Enforcer P
[Folklore]

Open Open PSPACE-c
Thm 2.1

PSPACE-c
Thm 2.1

Client-Waiter P
Thm 1.69

Open Open PSPACE-c
Thm 2.10

PSPACE-c
Thm 2.10

Waiter-Client P
Thm 1.70

Open1 Open1 Open1 Open1

Table 6.1: The complexity of the different conventions

In Chapter 3, we started the study of the complexity of classical games on the edges graphs. This
ongoing project still has a lot of questions open. First, the complexity of the hamiltonicity game in graphs

1After the redaction of the manuscript, we proved in [GOTT] that Waiter-Client games are FPT parameterized by the rank
of the hypergraph

159

is still unknown, even if I conjectured that it is PSPACE-complete. Related to the H-game, the two natural
directions to consider would be the path game and the clique game.

From the point of view of parameterized complexity, the Super Lemma was a powerful tool that allowed
to prove several results. You probably guessed it, but for me this lemma is the most important result of my
thesis, because of its numerous applications, and its simplicity: if two vertices are twins, Maker and Breaker
will each claim one in an optimal strategy. This lemma makes it possible to handle symmetries of the graph,
and we can wonder if a similar application of this lemma might occur in non-positional games, or even more,
in other graph theory problems. Moreover, its application in Chapter 4 provided an FPTalgorithm for the
modular width, and we can wonder if applying the Super Lemma to other games could provide the same
result.

Chapter 6 was a natural way to extend the study of positional games to handle some scoring games, but
other extensions should be interesting. For example, one can add constraints on the moves. The famous
board game Connect 4 is not handled by positional games because of the gravity. What happens if we
add a partially ordered set to our hypergraph, so that a vertex can only be claimed if all its predecessors
have already been claimed ? We recently started to study this type of games with Guillaume Bagan, Eric
Duchêne, Florian Galliot, Valentin Gledel, Mirjana Mikalački, Aline Parreau and Miloš Stojaković.

Among game problems whose complexity is still open Schaefer [Sch78] introduced two games in 1978:
Node Kayles and Arc Kayles. Both games are played by two players on a graph. In the first game, the
players take turns removing a vertex and all its neighbors, and in the second game, they take turns removing
two adjacent vertices. The first player who cannot move loses. Schaefer directly proved that determining
the winner of Node Kayles is PSPACE-complete, but the complexity of Arc Kayles is still open. With
Kyle Burke and Antoine Dailly [BDO24], we started working on this problem and proved that this game is
PSPACE-complete when we add the constraint that the players are not allowed to disconnect the graph. We
would like to continue this work and maybe succeed in proving that Arc Kayles is PSPACE-complete without
restrictions.

160

Bibliography

[ABBS02] Noga Alon, József Balogh, Béla Bollobás, and Tamás Szabó. Game domination number. Discrete
Mathematics, 256(1-2):23–33, 2002.

[ADGV15] Greg Aloupis, Erik D. Demaine, Alan Guo, and Giovanni Viglietta. Classic nintendo games
are (computationally) hard. Theoretical Computer Science, 586:135–160, 2015. Fun with Algo-
rithms.

[AvdHH96] L. Victor Alis, Jaap van der Herik, and M. P. H. Huntjens. Go-moku solved by new search
techniques. Computational Intelligence, 12, 1996.

[BDD+23] Guillaume Bagan, Quentin Deschamps, Eric Duchêne, Bastien Durain, Brice Effantin, Valentin
Gledel, Nacim Oijid, and Aline Parreau. Incidence, a scoring positional game on graphs. Dis-
crete Mathematics, in press, 2023.

[BDG06] Lois Blanc, Eric Duchêne, and Sylvain Gravier. A deletion game on graphs:“le pic arête”.
Integers: Electronic Journal of Combinatorial Number Theory, 6(G02):G02, 2006.

[BDO24] Kyle Burke, Antoine Dailly, and Nacim Oijid. Complexity and algorithms for arc-kayles and
non-disconnecting arc-kayles, 2024.

[Bec82] József Beck. Remarks on positional games. i. Acta Mathematica Hungarica, 40(1-2):65–71,
1982.

[Bec02] József Beck. Positional games and the second moment method. Combinatorica, 22:169–216,
2002.

[Bec08] József Beck. Combinatorial games: tic-tac-toe theory, volume 114. Cambridge University Press
Cambridge, 2008.

[Ber00] Elwyn R Berlekamp. The dots and boxes game: sophisticated child’s play. CRC Press, 2000.

[BF12] Afshin Behmaram and Shmuel Friedland. Upper bounds for perfect matchings in pfaffian and
planar graphs. The Electronic Journal of Combinatorics, 20, 2012.

[BFM+23] Julien Bensmail, Foivos Fioravantes, Fionn Mc Inerney, Nicolas Nisse, and Nacim Oijid. The
maker-breaker largest connected subgraph game. Theoretical Computer Science, 943:102–120,
2023.

[BFMIN22] Julien Bensmail, Foivos Fioravantes, Fionn Mc Inerney, and Nicolas Nisse. The largest con-
nected subgraph game. Algorithmica, 84(9):2533–2555, sep 2022.

[BGL+17] Édouard Bonnet, Serge Gaspers, Antonin Lambilliotte, Stefan Rümmele, and Abdallah Saffi-
dine. The Parameterized Complexity of Positional Games. In Ioannis Chatzigiannakis, Piotr
Indyk, Fabian Kuhn, and Anca Muscholl, editors, 44th International Colloquium on Automata,
Languages, and Programming (ICALP 2017), volume 80 of Leibniz International Proceedings in

161

Informatics (LIPIcs), pages 90:1–90:14, Dagstuhl, Germany, 2017. Schloss Dagstuhl – Leibniz-
Zentrum für Informatik.

[BH19] Kyle Burke and Bob Hearn. Pspace-complete two-color placement games. International Journal
of Game Theory, 48, 06 2019.

[BHKvM21] Kevin Buchin, Mart Hagedoorn, Irina Kostitsyna, and Max van Mulken. Dots & boxes is
pspace-complete. arXiv preprint arXiv:2105.02837, 2021.

[BHOP] Guillaume Bagan, Mathieu Hilaire, Nacim Oijid, and Aline Parreau. private communication.

[BJS16] Édouard Bonnet, Florian Jamain, and Abdallah Saffidine. On the complexity of connection
games. Theoretical Computer Science, 644:2–28, 2016. Recent Advances in Computer Games.

[BKR10] Boštjan Brešar, Sandi Klavzar, and Douglas Rall. Domination game and an imagination strat-
egy. SIAM J. Discrete Math., 24:979–991, 01 2010.

[BKTW20] Édouard Bonnet, Eun Jung Kim, Stéphan Thomassé, and Rémi Watrigant. Twin-width i:
tractable fo model checking. In 2020 IEEE 61st Annual Symposium on Foundations of Computer
Science (FOCS), pages 601–612, 2020.

[BL00] Malgorzata Bednarska and Tomasz Luczak. Biased positional games for which random strategies
are nearly optimal. Combinatorica, 20:477–488, 04 2000.

[BM76] John A. Bondy and Uppaluri S. R. Murty. Graph Theory with Applications. Elsevier, New
York, 1976.

[Bys04] Jesper Makholm Byskov. Maker-maker and maker-breaker games are pspace-complete. BRICS
Report Series, 11(14), 2004.

[CE78] Vašek Chvátal and Paul Erdös. Biased positional games. In B. Alspach, P. Hell, and D.J. Miller,
editors, Algorithmic Aspects of Combinatorics, volume 2 of Annals of Discrete Mathematics,
pages 221–229. Elsevier, 1978.

[CMP09] András Csernenszky, C. Ivett Mándity, and András Pluhár. On chooser–picker positional games.
Discrete Mathematics, 309(16):5141–5146, 2009.

[CMP11] András Csernenszky, Ryan Martin, and András Pluhár. On the complexity of chooser-picker
positional games. Integers, 2012:427–444, 11 2011.

[Coo71] Stephen A. Cook. The complexity of theorem-proving procedures. In Proceedings of the Third
Annual ACM Symposium on Theory of Computing, STOC ’71, page 151–158, New York, NY,
USA, 1971. Association for Computing Machinery.

[Cou90] Bruno Courcelle. The monadic second-order logic of graphs. i. recognizable sets of finite graphs.
Information and Computation, 85(1):12–75, 1990.

[Cse10] András Csernenszky. The chooser-picker 7-in-a-row-game. arXiv preprint arXiv:1004.2460,
2010.

[DDO+24] Eric Duchêne, Arthur Dumas, Nacim Oijid, Aline Parreau, and Eric Rémila. The maker–maker
domination game in forests. Discrete Applied Mathematics, 348:6–34, 2024.

[DF95] Rod G. Downey and Michael R. Fellows. Fixed-parameter tractability and completeness i:
Basic results. SIAM Journal on Computing, 24(4):873–921, 1995.

[DF99] Rodney G. Downey and Michael R. Fellows. Parameterized complexity. Springer-Verlag New
York, 1999.

162

[DGI+23] Eric Duchene, Valentin Gledel, Fionn Mc Inerney, Nicolas Nisse, Nacim Oijid, Aline Parreau,
and Miloš Stojaković. Complexity of maker-breaker games on edge sets of graphs. arXiv preprint
arXiv:2302.10972, 2023.

[DGP+21] Eric Duchene, Stéphane Gonzalez, Aline Parreau, Eric Rémila, and Philippe Solal. influence:
a partizan scoring game on graphs. Theoretical Computer Science, 878:26–46, 2021.

[DGPR20] Eric Duchêne, Valentin Gledel, Aline Parreau, and Gabriel Renault. Maker-Breaker domination
game. Discrete Mathematics, 343, 2020.

[DOP24] Eric Duchêne, Nacim Oijid, and Aline Parreau. Bipartite instances of influence. Theoretical
Computer Science, 982:114274, 2024.

[ES73] Paul Erdös and John L. Selfridge. On a combinatorial game. Journal of Combinatorial Theory,
Series A, 14(3):298–301, 1973.

[Ett96] John Mark Ettinger. Topics in combinatorial games. The University of Wisconsin-Madison,
1996.

[FG01] Markus Frick and Martin Grohe. Deciding first-order properties of locally tree-decomposable
structures. J. ACM, 48(6):1184–1206, nov 2001.

[Gal23] Florian Galliot. Hypergraphes et jeu Maker-Breaker : une approche structurelle. PhD thesis,
Université Grenoble Alpes, 2023. Thèse de doctorat dirigée par Gravier, Sylvain et Sivignon,
Isabelle Mathématiques et informatique Université Grenoble Alpes 2023.

[GGGP] Florian Galliot, Valentin Gledel, Sylvain Gravier, and Aline Parreau. private communication.

[GIK19] Valentin Gledel, Vesna Irsic, and Sandi Klavzar. Fast winning strategies for the maker-breaker
domination game. In Gabriel Coutinho, Yoshiharu Kohayakawa, Vińıcius Fernandes dos Santos,
and Sebastián Urrutia, editors, Proceedings of the tenth Latin and American Algorithms, Graphs
and Optimization Symposium, LAGOS 2019, Belo Horizonte, Brazil, June 2-7, 2019, volume
346 of Electronic Notes in Theoretical Computer Science, pages 473–484. Elsevier, 2019.

[Gle19] Valentin Gledel. Couverture de sommets sous contraintes. PhD thesis, Université Claude
Bernard, Lyon 1, 2019. Thèse de doctorat dirigée par Eric Duchêne et Aline Parreau Informa-
tique Lyon 2019.

[GLO13] Jakub Gajarský, Michael Lampis, and Sebastian Ordyniak. Parameterized algorithms for
modular-width. In Gregory Gutin and Stefan Szeider, editors, Parameterized and Exact Com-
putation, pages 163–176, Cham, 2013. Springer International Publishing.

[GO23] Valentin Gledel and Nacim Oijid. Avoidance Games Are PSPACE-Complete. In Petra Beren-
brink, Patricia Bouyer, Anuj Dawar, and Mamadou Moustapha Kanté, editors, 40th Interna-
tional Symposium on Theoretical Aspects of Computer Science (STACS 2023), volume 254 of
Leibniz International Proceedings in Informatics (LIPIcs), pages 34:1–34:19, Dagstuhl, Ger-
many, 2023. Schloss Dagstuhl – Leibniz-Zentrum für Informatik.

[GOTT] Valentin Gledel, Nacim Oijid, Sébastien Tavenas, and Stéphan Thomassé. private communica-
tion.

[GSV84] Yuri Gurevich, Larry Stockmeyer, and Uzi Vishkin. Solving np-hard problems on graphs that
are almost trees and an application to facility location problems. J. ACM, 31(3):459–473, jun
1984.

[Hal35] Philip Hall. On representatives of subsets. Journal of the London Mathematical Society,
10(1):26–30, 1935.

163

[Han59] Olof Hanner. Mean play of sums of positional games. Pacific Journal of Mathematics, 9(1):81–
99, 1959.

[HD09] Robert A. Hearn and Erik D. Demaine. Games, puzzles, and computation. CRC Press, 2009.

[Hef07] Dan Hefetz. Positional games on graphs. PhD thesis, Citeseer, 2007.

[HJ63] Robert I. Hales and Alfred W. Jewett. Regularity and positional games. Trans. Am. Math.
Soc, 106:222–229, 1963.

[HKS07a] Dan Hefetz, Michael Krivelevich, and Tibor Szabó. Avoider-Enforcer games. Journal of Com-
binatorial Theory, Series A, 114(5):840–853, 2007.

[HKS07b] Dan Hefetz, Michael Krivelevich, and Tibor Szabó. Bart–Moe games, JumbleG and discrepancy.
European Journal of Combinatorics, 28(4):1131–1143, 2007.

[HKSS07] Dan Hefetz, Michael Krivelevich, Miloš Stojaković, and Tibor Szabó. Fast winning strategies
in positional games. Electronic Notes in Discrete Mathematics, 29:213–217, 2007.

[HKSS08] Dan Hefetz, Michael Krivelevich, Miloš Stojaković, and Tibor Szabó. Planarity, colorability,
and minor games. SIAM Journal on Discrete Mathematics, 22(1):194–212, 2008.

[HKSS10] Dan Hefetz, Michael Krivelevich, Miloš Stojaković, and Tibor Szabó. Avoider–enforcer: The
rules of the game. Journal of Combinatorial Theory, Series A, 117(2):152–163, 2010.

[HKSS14] Dan Hefetz, Michael Krivelevich, Miloš Stojaković, and Tibor Szabó. Positional games, vol-
ume 44. Springer, 2014.

[HKT16] Dan Hefetz, Michael Krivelevich, and Wei En Tan. Waiter–client and client–waiter planarity,
colorability and minor games. Discrete Mathematics, 339(5):1525–1536, 2016.

[Jan13] Bart M.P. Jansen. Power of Data Reduction: Kernels for Fundamental Graph Problems. Dis-
sertation, Utrecht University, The Netherlands, 2013.

[Kar72] Richard M. Karp. Reducibility among Combinatorial Problems, pages 85–103. Springer US,
Boston, MA, 1972.

[KF05] Martin Kutz and Stefan Felsner. Weak positional games on hypergraphs of rank three. 2005
European Conference on Combinatorics, Graph Theory and Applications (EuroComb ’05),
DMTCS, 31-36 (2005), DMTCS Proceedings vol. AE,..., 01 2005.

[Kno12] Fiachra Knox. Two constructions relating to conjectures of beck on positional games. arXiv
preprint arXiv:1212.3345, 2012.

[Kri11] Michael Krivelevich. The critical bias for the hamiltonicity game is (1+o(1))n/ln n. Journal of
the American Mathematical Society, 24:125–131, 01 2011.

[Lam12] Michael Lampis. Algorithmic meta-theorems for restrictions of treewidth. Algorithmica, 64:19–
37, 2012.

[Leh64] Alfred Lehman. A Solution of the Shannon Switching Game. Journal of the Society for Indus-
trial and Applied Mathematics, 12(4):687–725, 1964.

[LNS15a] Urban Larsson, Richard J. Nowakowski, and Carlos P. Santos. Scoring combinatorial games:
the state of play. Games of No Chance, 2015.

[LNS15b] Urban Larsson, Richard J. Nowakowski, and Carlos P. Santos. When waiting moves you in
scoring combinatorial games. arXiv preprint arXiv:1505.01907, 2015.

164

[Lu91] Xiaoyun Lu. A matching game. Discret. Math., 94(3):199–207, 1991.

[Mil53] John Milnor. Sums of positional games. Contributions to the Theory of Games II, 28:291–301,
1953.

[MS22] Tillmann Miltzow and Miloš Stojaković. Avoider-enforcer game is np-hard. arXiv preprint
arXiv:2208.06687, 2022.

[Nen23] Rajko Nenadov. Probabilistic intuition holds for a class of small subgraph games. Proceedings
of the American Mathematical Society, 151(04):1495–1501, 2023.

[Pap94] Christos H. Papadimitriou. Computational complexity. Addison-Wesley, 1994.

[PSV23] Balázs Patkós, Milos Stojakovic, and Máté Vizer. The constructor-blocker game. Applicable
Analysis and Discrete Mathematics, pages 22–22, 01 2023.

[Rei81] Stefan Reisch. Hex ist PSPACE-vollständig. Acta Inf., 15(2):167–191, 1981.

[RW21] Md Lutfar Rahman and Thomas Watson. 6-uniform maker-breaker game is pspace-complete. In
Proceedings of the 38th International Symposium on Theoretical Aspects of Computer Science
(STACS), 2021.

[Sch78] Thomas J. Schaefer. On the Complexity of Some Two-Person Perfect-Information Games.
Journal of computer and system Sciences, 16:185–225, 1978.

[Sim68] Gustavus J. Simmons. The Game of SIM. In Mathematical Solitaires & Games, pages 50–50.
Routledge, 1968.

[Sla02] Wolfgang Slany. Endgame problems of sim-like graph ramsey avoidance games are pspace-
complete. Theoretical Computer Science, 289(1):829–843, 2002.

[SM73] Larry J. Stockmeyer and Albert R. Meyer. Word problems requiring exponential time (pre-
liminary report). In Proceedings of the fifth annual ACM symposium on Theory of computing,
pages 1–9, 1973.

[SS05] Miloš Stojaković and Tibor Szabó. Positional games on random graphs. Random Structures &
Algorithms, 26(1-2):204–223, 2005.

[Ste12] Fraser Stewart. Scoring play combinatorial games. Games of No Chance, 5:447–467, 2012.

[TCHP08] Marc Tedder, Derek Corneil, Michel Habib, and Christophe Paul. Simpler linear-time mod-
ular decomposition via recursive factorizing permutations. In Luca Aceto, Ivan Damg̊ard,
Leslie Ann Goldberg, Magnús M. Halldórsson, Anna Ingólfsdóttir, and Igor Walukiewicz, edi-
tors, Automata, Languages and Programming, pages 634–645, Berlin, Heidelberg, 2008. Springer
Berlin Heidelberg.

[Zet80] T.G.L. Zetters. Problems dedicated to emory p.starke. The American Mathematical Monthly,
87(7):574–576, 1980.

165

Index

3-SAT, 27
A-pairing, 102
A-trap, 104
B-trap, 104
FPT, 29
Maker-Breaker Scoring Positional Game, 139
Maker-Maker Scoring Positional Game, 140
NP, 26
POS CNF, 30
PSPACE, 28
QBF, 28
Quantified Max 2 SAT, 145
XP, 29
coNP, 27

Achievement games, 11
Adjacent vertices, 17
Avoidance games, 11
Avoider-Avoider games, 10
Avoider-Enforcer games, 10

Biased Maker-Breaker game, 21
Bipartite graph, 18
Block, 52
Block-hypergraph, 52
Board, 9
Bounded path, 106

Clause, 27
Client-Waiter games, 11
Clique, 17
Closed neighborhood, 17
Cluster, 17
Cograph, 17
Complete bipartite graph, 18
Complete graph, 17
Complexity class, 26
Conjonctive Normal Form formula (CNF), 27
Connected component, 17
Connected graph, 17
Connectivity game, 18
Cycle, 17

Decision problem, 26

Degree, 17
Dicotic, 137
Distance to cluster, 18
Dominate a vertex, 147
Dominating set, 17
Domination game, 19
Dual hypergraph, 9

Edge, 17
Equivalent games, 137
Equivalent vertices, 143

Favorable component, 118
Feedback edge set, 17
Feedback vertex set, 17
Forest, 17
Formula, 27

Graph, 17

H-game, 18
Hamiltonian cylcle, 17
Hamiltonicity game, 18
Hardness, 26
Hypergraph, 9
Hypergraph coloring, 25

Independent set, 17
Isolated vertex, 17

Kernelization, 29

Leaf, 17
Legitimate order, 43
Literal, 27

Maker-Breaker games, 10
Maker-Maker games, 10
Matching, 17
Milnor’s universe, 137
Modular-decomposition, 88
Modular-width, 88
Module, 88
Monotone (p, q) Avoider-Enforcer game, 23

166

Negative of a scoring game, 137
Neighbor, 17
Neighborhood diversity, 17
Neighborhood of a hyperedge, 25
Nonzugzwang, 137
Number, 137

Open neighborhood, 17

Pairing strategies, 37
Parameterized problem, 29
Partizan scoring positional games, 138
Path, 17
Pending path, 92
Perfect Matching, 17
Perfect matching game, 18
Planar graph, 18
Pointer position, 100
Probabilistic intuition, 23

Rank of a hypergraph, 9
Reduction, 26

Same type vertices, 150
Skeleton of a forest, 112
Spanning tree, 17
Split graph, 18
Stable set, 17
Standard forest, 113
Star, 18
Strong games, 11
Strongly favorable component, 118
Sub-hypergraph, 10
Subgraph, 17
Super Lemma, 39

Transveral, 9
Transversal hypergraph, 9
Trap, 104
Tree, 17

Uniform hypergraph, 9

Valuation, 27
Vertex, 17
Vertex cover, 17

Waiter-Client games, 11
Weak games, 11
Weakly favorable component, 118

167

	Introduction
	Preliminaries and state of the art
	Definitions
	General definition of positional games
	Link between the conventions
	Definitions about graphs
	Some examples of games

	History of positional games
	The beginning: Maker-Maker games
	Introduction of Maker-Breaker games
	Toward general results on positional games: Edős-Selfridge criterion
	Biased Maker-Breaker games
	Misere version: Avoider-Enforcer games
	I cut, you'll choose: Client-Waiter and Waiter-Client games
	Connection between positional games and other areas of computer science

	Algorithmic and complexity studies
	Complexity
	Complexity of positional games

	Tools in positional games
	Equivalences between hypergraphs
	Union of hypergraphs
	Dominated moves
	Pairing strategies
	Symmetries and Super Lemma

	Complexity of the different conventions
	Avoider-Enforcer games are PSPACE-complete
	Construction of the hypergraph and of the order
	Winner in the legitimate order
	Enforcer's winning strategy
	Avoider's winning strategy
	Conclusion

	Client-Waiter games are PSPACE-complete
	Paired SAT is PSPACE-complete
	Blocks in Client-Waiter games
	Construction of the hypergraph
	Waiter's winning strategy
	Client's winning strategy
	Conclusion

	Applications
	The construction of the graph
	Avoider-Enforcer domination game
	Waiter-Client domination game

	Further work

	Maker-Breaker games on edges
	PSPACE-completeness results
	PSPACE-completeness of the perfect-matching game
	PSPACE-completeness of the H-game

	Polynomial time algorithms
	Linear-time algorithm for the -game
	Star-game in trees

	Parameterized results
	Further work

	Parameterized complexity of the Maker-Breaker domination game
	Maker-Breaker domination game
	Preliminary results
	Number of moves
	When Staller must win in few moves
	When Dominator must win in few moves

	Size of a minimum dominating set
	The modular-width
	Size of a minimum feedback edge set
	Distance to cluster
	Further work

	Maker-Maker domination game
	Comparison between Maker-Breaker and Maker-Maker conventions
	General complexity
	Pairing strategies
	Removing leaves

	Preliminaries
	Union of components
	Splitting the game
	Traps

	Path and cycles
	Bounded baths
	Paths
	Cycles

	A polynomial algorithm on forests
	Removing small components
	Bottom-to-top strategies for Bob
	Cherries
	Definition of the skeleton and easy cases
	First move of Alice
	Splitting the graph
	Favorable skeletons for Alice

	Proof of the main theorem
	The direct part
	The converse part

	Further work

	Scoring positional games
	Scoring combinatorial games
	Definition of scoring positional games
	Milnor's universe
	Incidence

	General results on scoring positional games
	General complexity of scoring positional games
	Bounds on the score

	Maker-Maker Incidence is polynomial
	General results on Maker-Breaker Incidence
	Complexity of Maker-Breaker Incidence
	PSPACE-completeness of Incidence
	Complexity parameterized by the neighborhood diversity

	Paths and cycles
	Equivalences of paths
	Union of paths and cycles

	Further work

	Conclusion
	References
	Index

